- 1. $a^2 = 15$ 일 때, a 의 값으로 옳은 것은?
 - ① $-\sqrt{15}$
- ② $\sqrt{15}$ ③ $\pm 3\sqrt{5}$

 $\textcircled{4} \pm \sqrt{15} \qquad \qquad \textcircled{5} \quad 3\sqrt{5}$

a 는 15 의 제곱근이므로 $\pm \sqrt{15}$ 이다.

-1 < a < 2 일 때, 다음 식을 간단히 하면? 2.

$$\sqrt{(a-2)^2} - \sqrt{(a+1)^2}$$

 $\sqrt{(a-2)^2} - \sqrt{(a+1)^2}$

= -a + 2 - a - 1= -2a + 1

① a-3

해설

- ② -2a-3
- 3 2a + 1
- ④ 3 ⑤ 1

 $= -(a-2) - (a+1) \ (\because \ a-2 < 0, \ a+1 > 0)$

3. $\sqrt{78+a}=b$ 라 할 때, b 가 자연수가 되도록 하는 가장 작은 자연수 a 와 그때의 b 의 합 a+b 의 값은?

① 10

 $\therefore a=3 \ , \, b=9$ $\therefore a + b = 12$

- ② 12 ③ 15 ④ 16 ⑤ 18

 $78 + a = 9^2 = 81$

해설

- 4. $\sqrt{28-x}$ 가 자연수가 되도록 하는 자연수 x 의 값이 <u>아닌</u> 것을 고르면?
 - ① 3 ② 5 ③ 12 ④ 19 ⑤ 27

28 보다 작은 제곱수는 1,4,9,16,25 ② $\sqrt{28-5}=\sqrt{23}$

23은 제곱수가 아니므로 x = 5

5. 다음 중 무리수는 모두 몇 개인가?

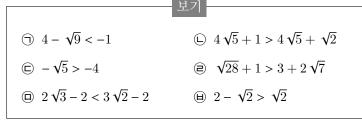
 $\sqrt{121}$, $\frac{\sqrt{12}}{2}$, $-\frac{\pi}{2}$, $\sqrt{0.04}$, $\sqrt{3}-2$

① 1 <u>개</u> ② 2 <u>개</u> ③ 3 <u>개</u> ④ 4 <u>개</u> ⑤ 5 <u>개</u>

 $\sqrt{121} = 11$, $\sqrt{0.04} = 0.2$: 유리수 $\frac{\sqrt{12}}{2}$, $-\frac{\pi}{2}$, $\sqrt{3} - 2$: 무리수

- 다음 설명 중 옳지 <u>않은</u> 것을 모두 고르면? 6.
 - ① 두 유리수 $\frac{1}{5}$ 과 $\frac{1}{3}$ 사이에는 무수히 많은 유리수가 있다.
 - ② 두 무리수 $\sqrt{5}$ 와 $\sqrt{6}$ 사이에는 무수히 많은 무리수가 있다. ③ $\sqrt{5}$ 에 가장 가까운 유리수는 2 이다.
 - ④ 서로 다른 두 유리수의 합은 반드시 유리수이지만, 서로 다른
 - 두 무리수의 합 또한 반드시 무리수이다. ⑤ 실수와 수직선 위의 점 사이에는 일대일 대응이 이루어진다.

③ $\sqrt{4}$ 와 $\sqrt{5}$ 사이에는 무수히 많은 유리수가 존재 한다.


해설

- ④ 두 무리수를 더해 유리수가 될 수도 있다. 예) $\sqrt{2} + (-\sqrt{2}) = 0$

7. 다음 중 옳은 것을 <u>모두</u> 고른 것은?

 $\textcircled{1} \ \textcircled{7}, \textcircled{2}, \textcircled{9}, \textcircled{4}$

해설

③ ⑦, ₺, ₪

④ ©, □
⑤ ②, □

② ①, ⑤, ⑤

8. 다음 보기의 수를 각각 제곱근으로 나타낼 때, 근호를 사용하지 않아도 되는 것을 모두 고르면?

④ ¬, □, □⑤ □, □, □

해설

⊕, ⊕, ⊕ ⊕ ⊕, ⊕, ⊕

 $\sqrt{36} = 6$ 이므로 6 의 제곱근은 $\pm \sqrt{6}$ 이다. $\sqrt{(-3)^2} = 3$ 이므로 3 의 제곱근은 $\pm \sqrt{3}$ 이다. (1.6 의 제곱근) $= \pm \sqrt{1.6}$ (1.6 은 제곱수가 아니다.) $\left(\frac{81}{6}$ 의 제곱근 $\right) = \pm \frac{9}{\sqrt{6}}$

- 9. $\frac{\sqrt{4^2}}{2} = a, -\sqrt{(-6)^2} = b, \sqrt{(-2)^2} = c 라 할 때, 2a^2 \times b^2 b \div c 의$
 - ① 282 ② 285 ③ 288 ④ 291 ⑤ 294

$$a = \frac{\sqrt{4^2}}{2} = \frac{4}{2} = 2, \ b = -\sqrt{(-6)^2} = -6, \ c = \sqrt{(-2)^2} = 2$$
$$\therefore 2a^2 \times b^2 - b \div c = 2 \times 4 \times 36 - (-6) \times \frac{1}{2}$$

$$\therefore 2a^{2} \times b^{2} - b \div c = 2 \times 4 \times 36 - (-6) \times \frac{1}{2}$$
$$= 288 + 3 = 291$$

$$=288+3=291$$

- **10.** 두 실수 a, b 에 대하여 a-b<0, ab<0 일 때, $\sqrt{a^2}+\sqrt{b^2}-\sqrt{(-a)^2}+\sqrt{(-b)^2}$ 을 간단히 한 것은?
 - ① 0 ② 2a ③ a-b ④ 2b ⑤ a+b

해설

ab < 0 이면 a와 b의 부호가 다르다. a - b < 0 이면 a < b 이므로 a < 0, b > 0 이다. a < 0 이므로 $\sqrt{a^2} = -a$, b > 0 이므로 $\sqrt{b^2} = b$ a < 0 이므로 $\sqrt{(-a)^2} = \sqrt{a^2} = -a$ b > 0 이므로 $\sqrt{(-b)^2} = \sqrt{b^2} = b$ 따라서 $\sqrt{a^2} + \sqrt{b^2} - \sqrt{(-a)^2} + \sqrt{(-b)^2}$ = -a + b - (-a) + b= 2b **11.** 0 < a < 1 일 때, 다음 중 가장 큰 값은?

- ① a^2 ② $\sqrt{\left(\frac{1}{a}\right)^2}$ ③ \sqrt{a} ④ $\sqrt{(-a)^2}$ ⑤ $\frac{1}{\sqrt{a}}$

$$\overline{\sqrt{}}$$

0 < a < 1 일 때 $a = \frac{1}{4}$ 라 하면

①
$$a^2 = \left(\frac{1}{4}\right)^2 = \frac{1}{16}$$
② $\sqrt{\left(\frac{1}{a}\right)^2} = \sqrt{\frac{1}{\left(\frac{1}{4}\right)^2}} = \sqrt{16} = 4$

$$\sqrt[3]{\sqrt{a}} = \sqrt{\frac{1}{4}} = \frac{1}{3}$$

$$\sqrt{\frac{1}{4}}$$
 $\sqrt{\frac{1}{4}}$ $\frac{1}{2}$

12. a는 유리수, b는 무리수일 때, 다음 중 그 값이 항상 무리수인 것은?

 $3 a^2 - b^2$

① $\sqrt{a} + b$ ② $\frac{b}{a}$ ② $\frac{b}{a}$

2.1

① $a=2,b=-\sqrt{2}$ 일 때, $\sqrt{2}+(-\sqrt{2})=0$ 이므로 유리수이다. ③ $b=\sqrt{2}$ 일 때, $b^2=2$ 이므로 a^2-b^2 는 유리수이다. ④ a=0 일 때, ab=0 이므로 유리수이다.

④ a = 0 일 때, ab = 0 이므로 유리수이다. ⑤ $a = 2, b = \sqrt{8}$ 일 때, $\frac{\sqrt{8}}{\sqrt{2}} = 2$ 이므로 유리수이다.

,-

13. 다음 중에서 옳은 설명을 모두 고른 것은?

모든 무리수 x, y 에 대하여 \neg . x+y는 항상 무리수이다. \bot . x - y 는 항상 무리수이다. \Box . $x \times y$ 는 항상 무리수이다. =. $x \div y$ 는 항상 무리수이다.

④ ㄱ, ㄴ, ㄷ, ㄹ

③ 없다

② 7, L

③ 7, ∟, ⊏

해설

ㄱ.의 반례 : $x=\sqrt{2},\;y=-\sqrt{2}$ 라 하면 $\sqrt{2}+(-\sqrt{2})=0$ ㄴ.의 반례 : $x=\sqrt{2},\ y=\sqrt{2}$ 라 하면 $\sqrt{2}-\sqrt{2}=0$

ㄷ.의 반례 : $x=\sqrt{2},\ y=\sqrt{2}$ 라 하면 $\sqrt{2}\times\sqrt{2}=(\sqrt{2})^2=2$ ㄹ.의 반례 : $x=\sqrt{2},\ y=\sqrt{2}$ 라 하면 $\sqrt{2}\div\sqrt{2}=1$ 따라서, 옳은 것은 ⑤ 없다.

14. 다음 중 수직선에 나타낼 때, 가장 오른쪽에 있는 수는?

$$3 + \sqrt{3}$$
, $2\sqrt{3} - 1$, $1 + \sqrt{2}$, $\sqrt{3} - 2$, $6 - \sqrt{3}$

 $\bigcirc 3 + \sqrt{3}$

② $2\sqrt{3}-1$ $4 \quad \sqrt{3} - 2$ $5 \quad 6 - \sqrt{3}$

 $31 + \sqrt{2}$

해설 ① $\sqrt{1} < \sqrt{3} < \sqrt{4}$

 $3 + \sqrt{1} < 3 + \sqrt{3} < 3 + \sqrt{4}$ $\therefore \ 4 < 3 + \sqrt{3} < 5$

② $2\sqrt{3} - 1 = \sqrt{12} - 1$

 $\sqrt{9} < \sqrt{12} < \sqrt{16}$ $\sqrt{9} - 1 < \sqrt{12} - 1 < \sqrt{16} - 1$

 $\therefore 2 < \sqrt{12} - 1 < 3$

 $1 + \sqrt{1} < 1 + \sqrt{2} < 1 + \sqrt{4}$

 $\therefore 2 < 1 + \sqrt{2} < 3$ (4) $\sqrt{3} - 2 = \sqrt{3} - \sqrt{4} < 0$

음수이므로 제일 왼쪽에 있다.

 \bigcirc $-\sqrt{4} < -\sqrt{3} < -\sqrt{1}$ $6 - \sqrt{4} < 6 - \sqrt{3} < 6 - \sqrt{1}$

 $\therefore 4 < 6 - \sqrt{3} < 5$

①과 ⑤를 비교해 보면 $3 + \sqrt{3} - (6 - \sqrt{3}) = 2\sqrt{3} - 3 = \sqrt{12} - \sqrt{9} > 0$

 $\therefore 3 + \sqrt{3} > 6 - \sqrt{3}$

15. 다음 수직선 위의 점 A, B, C, D 에 대응하는 수는 $4\sqrt{3}-2, 2\sqrt{5}-5, 10 3\sqrt{5},\sqrt{27}$ 이다. 점 A에 대응하는 수를 a, 점 B에 대응하는 수를 b라 할 때, a+b의 값을 구하면?

- ① $3\sqrt{3} 3\sqrt{5} + 10$
- ② $4\sqrt{3} + 2\sqrt{5} 7$
- $3\sqrt{3} + 2\sqrt{5} 5$ ⑤ $\sqrt{3} - 2$
- $45 \sqrt{5}$

 $4\sqrt{3} - 2 = \sqrt{48} - 2 = 4. \times \times \times : C$

해설

 $2\sqrt{5} - 5 = \sqrt{20} - 5 = -0. \times \times \times : A$

 $10 - 3\sqrt{5} = 10 - \sqrt{45} = 3. \times \times \times : B$

 $\sqrt{27} = 5. \times \times \times : D$ $a = 2\sqrt{5} - 5, b = 10 - 3\sqrt{5}$ $\therefore a + b = (2\sqrt{5} - 5) + (10 - 3\sqrt{5}) = 5 - \sqrt{5}$