
1. 네 지점 P, Q, R, S 를 연결하는길이 아래 그림과 같다. 같은 지점을 두 번 이상 지나지 않고 P 에서 S 로가는 길을 택하는 방법은 몇가지인지 구하여라.

PS

답: ____ 가지

 $\mathbf{2}$. 다음 그림과 같이 1부터 6까지의 번호가 붙어 있는 동전 6개 증에서 2개를 뒤집어서 앞면과 뒷면의 개수가 변하지 않게 하려 한다. 서로 다른 방법은 모두 몇 가지 있는가?

② 8가지 ③ 12가지

① 4가지

④ 16가지 ⑤ 24가지

3. 2000 의 양의 약수 중 제곱수가 아니면서 짝수인 것의 개수는?

① 4 ② 6 ③ 8 ④ 10 ⑤ 12

4. 등 번호가 ①,②,③,④ 인 네 명이 이어달리기 순서를 결정하려고 한다. 네 명 모두 자신의 등 번호와 달리는 순서의 번호가 서로 같지 않도록 순서를 결정하는 방법의 수는?

▶ 답: _____ 개

- 5. 100 원짜리 동전 3 개, 50 원짜리 동전 3 개, 10 원짜리 동전 3 개를 가지고 지불할 수 있는 방법의 수를 a, 지불할 수 있는 금액의 수를 b라 할 때, a+b의 값은?
 - ① 98 ② 102 ③ 110 ④ 115 ⑤ 120

6. 100 원짜리 동전 2개, 50 원짜리 동전 4개, 10 원짜리 동전 4개를 가지고 지불할 수 있는 방법의 수와 지불할 수 있는 금액의 수의 합을 구하여라.

답: ____ 가지

7. '3•6•9 게임'은 참가자들이 돌아가며 자연수를 1부터 차례로 말하되 3, 6, 9가 들어가 있는 수는 말하지 않는 게임이다. 예를 들면 3, 13, 60, 396, 462, 900등은 말하지 않아야 한다. '3•6•9 게임'을 할 때, 1 부터 999까지의 자연수 중 말하지 않아야 하는 수의 개수를 구하여라.

▶ 답: _____ 개

- 8. 토정비결에서는 다음 조건에 맞는 3개의 수 A, B, C로 각 사람의 그해의 운세 A B C 를 결정한다.
 - (2) B는 태어난 달에 해당하는 수를 6으로 나눈 나머지(3) C는 태어난 날에 해당하는 수를 8로 나눈 나머지

(1) A는 태어난 해에 해당하는 수를 3으로 나눈 나머지

 토정비결에 있는 서로 다른 운세
 A
 B
 C
 는 모두 몇 가지인가?

(단, 나머지가 0인 경우에는 나누는 수를 나머지로 한다)

② 144가지 ③ 127가지

④ 216가지

① 64가지

⑤ 254가지

9. 수험생 6 명의 수험표를 섞어서 임의로 1장씩 나누어 줄 때 6명 중 어느 2명이 자기 수험표를 받을 경우의 수를 구하면?

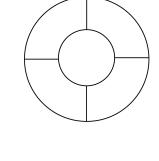
④ 135가지 ⑤ 145가지

- ① 60가지 ② 85가지 ③ 120가지

10. 10 원, 100 원, 500 원짜리 동전이 각각 12개, 3개, 2개가 있다. 이들 동전을 사용하여 지불할 수 있는 방법의 종류를 a가지, 지불할 수 있는 금액의 수를 b가지라 할 때, a-b 의 값은? (단, 0원을 지불하는 경우는 제외한다.)

① 18 ② 21 ③ 24 ④ 27 ⑤ 35

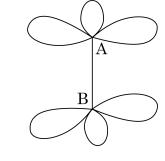
사용하여 거스름돈 없이 지불하는 경우에 지불방법의 수를 a, 지불금액의 수를 b라 할 때, a+b의 값을 구하여라.


 $11. \ \ 100 \$ 원짜리 동전 $2 \$ 개, $50 \$ 원짜리 동전 $3 \$ 개, $10 \$ 원짜리 동전 $4 \$ 개를

▶ 답: _____ 가지

12. 10 원짜리 동전 2개, 50 원짜리 동전 3개, 100 원짜리 동전 1개의 일부 또는 전부를 사용하여 지불할 수 있는 방법의 수를 a, 지불할 수 있는 금액의 수를 b라 할 때, a-b의 값은?

① 4 ② 5 ③ 6 ④ 7 ⑤ 8


13. 다음의 원형 판에 서로 다른 4 가지의 색을 칠하려고 한다. 접한 부분은 서로 다른 색을 칠하고, 4 가지 색을 모두 사용한다고 할 때, 칠하는 방법의 수는? (단 회전해서 같은 모양이 나오면 같다고 생각한다.)

⑤ 24

① 12 ② 16 ③ 20 ④ 23

14. 다음 그림과 같이 도형을 그리는데 연필을 떼지 않고 한 번에 그리는 방법의 수는? (A 또는 B 에서 시작한다.)

3 4600

4608

⑤ 4612

① 4588 ② 4592

15. 어떤 원자의 전자들은 에너지의 증감에 따라 세 가지 상태 a,b,c로 바뀐다. 이 때, 다음 규칙이 적용된다고 하자.

규칙1: 에너지가 증가하면 b상태의 전자는 c상태로 올라가고,

a상태의 전자 중 일부는 b상태로, 나머지는 c상태로 올라간다. 규칙2: 에너지가 감소하면 b상태의 전자는 a상태로 내려가고, c상태의 전자 중 일부는 b상태로, 나머지는 a상태로내 려간다.

<단계1>에서 전자는 a상태에 있다. 에너지가 증가하여<단계2>

취할 수 있는 변화의 경로는 $a \rightarrow b$ 와 $a \rightarrow c$ 의 2가지이다. 다시 에너지가 감소하여 <단계3>이 되면, 이 때까지의 가능한 변화 경로는 $a \to b \to a, a \to c \to b, a \to c \to a$ 의 3가지이다. 이와 같이 순서대로 에너지가 증감을 반복할 때, <단계1>부터 <단계7>까지 이 전자의 가능한 변화 경로의 수는?

가 되면 이 전자는 b상태 또는 c상태가 된다. 이때, 이 전자가

① 18 ② 19 ③ 20 ④ 21 ⑤ 22