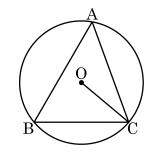
- 1. 남자 3명과 여자 4명으로 이루어진 모임에서 대표 1명, 남녀 부대표를 각각 1명씩 뽑는 경우의 수는?
  - ① 48가지 ② 60가지 ③ 72가지 ④ 90가지 ⑤ 120가지

대표가 여자인 경우: 4 × 3 × 3 = 36(가지) ∴ 24 + 36 = 60(가지)

대표가 남자인 경우 :  $3 \times 2 \times 4 = 24$ (가지)

해설

- 2. 다음 그림과 같이 삼등분, 육등분된 두 원판이 있다. 이 두 원판의 바늘이 각각 돌아 멈추었을 때, 두 바늘 모두 C에 있을 확률을 구하면?


- ①  $\frac{1}{3}$  ②  $\frac{1}{6}$  ③  $\frac{1}{12}$  ④  $\frac{1}{15}$  ⑤  $\frac{1}{18}$

삼등분된 원판의 바늘이 C에 있을 확률은  $\frac{1}{3}$ 육등분된 원판의 바늘이  $\mathrm{C}$ 에 있을 확률은  $\frac{1}{6}$ 

따라서 두 바늘 모두 C에 있을 확률은

 $\frac{1}{3} \times \frac{1}{6} = \frac{1}{18}$ 

3. 다음 그림에서 점 O는  $\triangle$ ABC의 외심이고,  $\angle$ OCB =  $40^{\circ}$ 일 때,  $\angle$ BAC의 크기를 구하면?



① 50° ② 55° ③ 60° ④ 65° ⑤ 70°

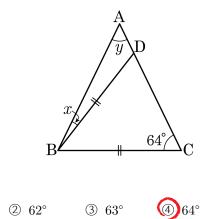
 $\Delta OBC$ 는 이등변삼각형이므로  $\angle OBC = \angle OCB = 40\,^\circ,$   $\angle BOC = 100\,^\circ$   $\Delta ABC$ 에서  $\angle BAC = \frac{1}{2}\angle BOC = 50\,^\circ$ 

해설

- **4.** 2, 3, 4, 5, 6의 숫자가 적힌 카드 중에서 임의로 한 장을 선택할 때, 그 카드의 숫자가 소수일 확률은?
  - ①  $\frac{1}{8}$  ②  $\frac{1}{2}$  ③  $\frac{2}{5}$  ④  $\frac{7}{8}$  ⑤  $\frac{3}{5}$

 $2,\ 3,\ 4,\ 5,\ 6$ 의 카드에서 한 개를 택하는 경우의 수는 5가지이고 소수 2 , 3 , 5를 택하는 경우의 수는 3가지이므로 구하고자 하는 확률은  $\frac{3}{5}$ 이다.

- **5.** A,B,C,D,E 5명의 학생들을 일렬로 세우는 데 A,C,E 3명이 함께 이웃할 확률은?
  - ①  $\frac{1}{5}$  ②  $\frac{3}{10}$  ③  $\frac{2}{5}$  ④  $\frac{1}{2}$  ⑤  $\frac{3}{5}$

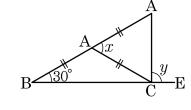

모든 경우의 수는  $5 \times 4 \times 3 \times 2 \times 1 = 120$ (가지) A C E를 하 명으로 생각하며 3명을 일력로

A, C, E를 한 명으로 생각하면, 3 명을 일렬로 세우는 방법은  $3 \times 2 \times 1 = 6$ (가지) A, C, E가 순서를 정하는 방법의 수는  $3 \times 2 \times 1 = 6$ (가지)

∴ 3명이 이웃할 경우의 수는 6×6 = 36(가지)

따라서 확률은  $\frac{36}{120} = \frac{3}{10}$ 

다음 그림에서  $\triangle ABC$ 는  $\overline{AB}=\overline{AC}$ 인 이등변삼각형이다.  $\overline{BC}=\overline{BD}$ 6. 이고  $\angle C = 64^{\circ}$ 일 때,  $\angle x + \angle y$ 의 값은?




③ 63°

① 61°

 $\Delta \mathrm{BCD}$ 는  $\overline{\mathrm{BC}} = \overline{\mathrm{BD}}$ 인 이등변삼각형이므로  $\angle BDC = 64^{\circ}$  $\therefore \angle x + \angle y = 64^{\circ}$ 

7. 다음 그림에서  $\overline{AB}=\overline{AC}=\overline{AD}$ ,  $\angle ABC=30^\circ$  일 때,  $\angle x+\angle y$  의 크기를 구하여라.



 $\bigcirc$  190°

4 180°

① 150°

 $3170^{\circ}$ 

 $\overline{\mathrm{AB}}=\overline{\mathrm{AC}}=\overline{\mathrm{AD}}$  이므로 빗변의 중점인 점 A 는 직각삼각형의 외심이다.  $\overline{\mathrm{AB}} = \overline{\mathrm{AC}}$  이므로  $\Delta \mathrm{ABC}$  는 이등변삼각형

 $\therefore \angle ACB = \angle ABC = 30^\circ$ 

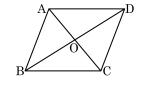
② 160°

삼각형의 외각의 성질에 의해  $\angle DAC = \angle ACB + \angle ABC =$ 

 $30^\circ + 30^\circ = 60^\circ$  $\therefore \angle x = 60^{\circ} \cdots \bigcirc$ 

 $\overline{\mathrm{CA}} = \overline{\mathrm{AD}}$  이므로

△ACD 는 이등변삼각형


 $\therefore \angle ACD = \angle CDA = 60^{\circ} \ (\because \ \bigcirc)$ 

세 내각의 크기가 같으므로 삼각형 ACD 는 정삼각형이다.  $\angle DCB = \angle ACD + \angle ACB = 60^{\circ} + 30^{\circ} = 90^{\circ}$ 

 $\angle DCE = 90^{\circ}$  이다.

 $\therefore \angle y = 90^{\circ} \cdots \bigcirc$ ①, ⓒ에 의해서  $\angle x + \angle y = 60^\circ + 90^\circ = 150^\circ$ 

8. 다음 그림과 같은 평행사변형 ABCD에서 점 O가 두 대각선의 교점일 때, ΔABC의 넓이가 24였다. ΔCOD의 넓이는?



① 6

(2)

③ 24

48

⑤ 알수 없다.

△ABO, △OBC,△OCD, △OAD의 넓이가 같으므로

해설

 $\triangle OCD = \frac{1}{2} \times \triangle ABC = 12$ 이다.