① $2 \times 3 \times 5$ ② $2^2 \times 3^2 \times 5$ ③ $2^2 \times 3 \times 5^2$

 $(4) 2^3 \times 3^2$ $(5) 2^2 \times 3^2$

1. $2^5 \times 3^2 \times 5^2$, 108 의 최대공약수는?

공통인 소인수를 모두 곱하는데 지수가 같으면 그대로, 다르면 작은 쪽을 택하여 곱한다. ∴ 2⁵ × 3² × 5², 108 = 2² × 3³ 의 최대공약수: 2² × 3² 2. 두 수 A 와 B 의 최대공약수가 12 일 때, 다음 중 A 와 B 의 공약수가 아닌 것은?

해설 공약수는 최대공약수의 약수인데 ⑤ 5 는 12 의 약수가 아니다.

3. 두 수
$$2^2 \times 3 \times 5$$
, $2^3 \times 3^2 \times 7$ 의 공약수의 개수는?

해설 두 수 $2^2 \times 3 \times 5$, $2^3 \times 3^2 \times 7$ 의 최대공약수는 $2^2 \times 3$ 이므로 공약수의 개수는 $(2+1) \times (1+1) = 6$ **1.** 54 와 72 의 공약수 중에서 3 의 배수인 약수를 *a* 개라 할 때 *a* 의 약수의 개수는?

해설
최대공약수: 18
18 의 약수는 1, 2, 3, 6, 9, 18 이므로 3 의 배수인 약수는 4
개이다.
4 를 a 라 할 때 a 의 약수의 개수는
$$2^2 = (2+1) = 3$$

거봉 1박스 $2^2 \times 5^2 \times 7 \times 11$. $2^2 \times 3 \times 5 \times 7$

진희는 어머니 심부름으로 인터넷으로 과일의 가격을 알아보고 주문 하려고 한다. 인터넷 검색 결과 아래 과일의 가격이 다음과 같았다. 과일의 가격은 주어진 수의 최소공배수라고 할 때, 가장 싼 과일을

키위 1박스

 $2^2 \times 5^2$, $3^3 \times 5^2 \times 7$, 3^2

5.

말하여라.

오레지 1박스

 $2^3 \times 5^2 \times 7$, $2 \times 3 \times 5^3$, 2×3

바나나 1박스 $2^2 \times 5^2 \times 7$, $2^3 \times 3 \times 5$, $3^2 \times 5 \times 7$

 $2^3 \times 5^2 \times 7$, $2 \times 3 \times 5^3$, 2×3

▶ 답:

오렌지 1박스

▷ 정답: 바나나

해설

=23100

→ 거봉 1 박스의 가격 23100 원 $2^2 \times 5^2$, $3^3 \times 5^2 \times 7$, 3^2 의 최소공배수 : $2^2 \times 3^3 \times 5^2 \times 7 = 18900$ → 키위 1 박스의 가격 18900 원

 $2^{3} \times 5^{2} \times 7$, $2 \times 3 \times 5^{3}$, 2×3 의 최소공배수 : $2^{3} \times 3 \times 5^{3} \times 7$

 $2^2 \times 5^2 \times 7 \times 11$. $2^2 \times 3 \times 5 \times 7$ 의 최소공배수 : $2^2 \times 3 \times 5^2 \times 7 \times 11$

=21000→ 오렌지 1 박스의 가격 21000 원

 $2^2 \times 5^2 \times 7$, $2^3 \times 3 \times 5$, $3^2 \times 5 \times 7$ 의 최소공배수 : $2^3 \times 3^2 \times 5^2 \times 7$ =12600

→ 바나나 1 박스의 가격 12600 원

- **6.** 세 수 16, 6, 2 × 3² 의 공배수 중 300 에 가장 가까운 수는?
 - ① 308 ② 302 ③ 295 ④ 291 ⑤ 288

세 수의 최소공배수는 $2^4 \times 3^2 = 144$ 이므로 세 수의 공배수는 144 의 배수가 된다. 따라서 144, 288, 432,··· 중 300 에 가장 가까운 수를 찾는다.

- 7. $2^2 \times 3 \times 5$, $2 \times 3^2 \times 5$ 의 공배수가 아닌 것은?
 - (1) $2^3 \times 3^2 \times 5$
 - (4) $2^2 \times 3^2 \times 5$ (5) $2^3 \times 3^3 \times 5^3$

 $2^2 \times 3 \times 5, 2 \times 3^2 \times 5$ 의 공배수는 두 수의 최소공배수인 $2^2 \times 3^2 \times 5$ 의 배수이다.

8. 100 과 서로소인 두 자리 자연수의 개수를 구하여라.

▷ 정답: 36 개

해설 $100 = 2^2 \times 5^2$

→ 100 = 2 , 5 → 100 과 서로소인 수는 2 의 배수가 아니고, 5 의 배수가 아니 어야 한다.

두 자리 자연수의 개수는 90개이고, 두 자리 자연수 중 2의 배수는 45개이고, 두 자리 자연수 중 5의 배수는 18개이고, 두 자리 자연수 중 10의 배수는 9개이다.

100 과 서로소인 두 자리 자연수의 개수= 90 - 45 - 18 + 9 = 36

네 수 14, 42, 56, A 의 최소공배수가 336 일 때, A 의 최댓값을 구하여라.

▷ 정답: 336

해설
$$14 = 2 \times 7, \ 42 = 2 \times 3 \times 7, \ 56 = 2^3 \times 7, \ 336 = 2^4 \times 3 \times 7 \ \text{이므로},$$
 A 값이 될 수 있는 수는 $2^4 \times 3^x \times 7^y$ $(x, y$ 는 0 또는 1)이며,
최댓값을 가질 때는 $x, \ y = 1$ 일 때이므로 A 의 최댓값은 336 이다.

10. 서로 다른 두 자연수 a, b 의 최소공배수는 60 이고, 9a - b = 6 일 때, 두 수의 최대공약수를 구하여라.

▷ 정답: 2

$$a, b$$
 의 최대공약수를 G , 최소공배수를 L 이라고 하면 $a = xG$, $b = yG$, $L = xyG$ (단, x 와 y 는 서로소)로 놓을 수 있다. 최소공배수가 60 이므로 $xyG = 60 \cdots$ \bigcirc

$$9xG - yG = 6 \cdots \bigcirc$$

또 9a - b = 6 이므로

각 변끼리
$$\frac{\square}{\square}$$
 을 계산하면

$$\frac{9xG - yG}{xyG} = \frac{6}{60} \text{ and } \frac{9x - y}{xy} = \frac{1}{10},$$

$$90x - 10y = xy, \ x(90 - y) = 10y,$$

x, y 는 서로소인 자연수이므로

xvG = 60 에서 G = 2