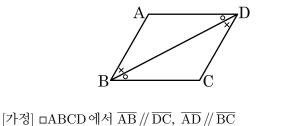
1. 다음은 '평행사변형에서 두 쌍의 대변의 길이는 각각 같다.' 를 증명한 것이다. □ 안에 들어갈 것을 차례대로 나열하면?



[결론] $\overline{AB} = \overline{CD}$, $\overline{AD} = \overline{BC}$ [증명] 점 B와 점 D를 이으면 △ABD와 △CDB에서 \overline{AB} // \overline{DC} 이므로 ∠ABD = ∠CDB (엇각) ··· ① \overline{AD} // \overline{BC} 이므로 ∠ADB = (엇각) ··· © □ 는 공통 ··· © ①, ②, ②에 의해서 △ABD ≡ △CDB (합동) :. \overline{AB} =

 $\overline{\text{CD}}, \ \overline{\text{AD}} = \overline{\text{BC}}$

① $\angle CDB$, \overline{BC} , SSS

3 $\angle BCD$, \overline{BC} , ASA 4 $\angle CDB$, \overline{BD} , ASA

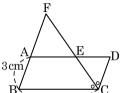
⑤ ∠DBC, DB, ASA

좌표평면 위의 점 A, B(-2, -1), C(5, 1), D(4, 5) 로 이루어지는 □ABCD 가 평행사변형이 되도록 점 A 의 좌표는? (단. 점 A는 제 2 사분면 위에 있다.) (1) (-1, 3)(2) (-1, 2)(3) (-3, 3)(4) (-3, 2) \bigcirc (-3, 4)

- 3. 직사각형의 중점을 연결했을 때 나타나는 사각형의 성질을 나타낸 것이다. 다음 중 옳지 않은 것은?
 ① 네 변의 길이가 모두 같다.
 - ② 두 대각선이 서로 수직으로 만난다.
 - ③ 두 쌍의 대변이 각각 평행하다.
 - ④ 네 각의 크기가 모두 직각이다.

⑤ 두 대각선이 내각을 이등분한다.

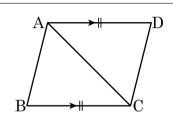
 $3 \,\mathrm{cm}$, $\overline{\mathrm{BC}} = 7 \,\mathrm{cm}$ 일 때, $\overline{\mathrm{AF}}$ 의 길이를 구하 여라



 $^{\mathrm{cm}}$

다음 그림과 같은 평행사변형 ABCD 에서 $\angle C$ 의 이등분선이 \overline{AD} 와 \overline{BA} 의 연장선 과 만나는 점을 각각 E,F 라 하자. \overline{AB} =

5. 다음은 '한 쌍의 대변이 평행하고 그 길이가 같은 사각형은 평행사 변형이다.'를 증명하는 과정이다. 밑줄 친 부분 중 <u>틀린</u> 곳을 모두고르면?



가정) $\square ABCD$ 에서 $\overline{AD} / / \overline{BC}$, $\neg . \overline{AD} = \overline{BC}$

결론) $\overline{AB} // \overline{DC}$

증명) 대각선 AC를 그으면

 $\triangle ABC$ 와 $\triangle CDA$ 에서 \neg . $\overline{AD} = \overline{BC}$ (가정) \cdots \neg

L. ∠DCA = ∠BAC (엇각) ··· ©

ㄷ. $\overline{\mathrm{AC}}$ 는 공통 \cdots \bigcirc

①, \bigcirc , \bigcirc 에 의해서 $\triangle ABC \equiv \triangle CDA (ㄹ. <u>SAS</u> 합동)$

 \Box . $\angle DAC = \angle BCA$ 이므로

 $\therefore \overline{AB} /\!/ \overline{DC}$

따라서 두 쌍의 대변이 각각 평행하므로 □ABCD는 평행사변형이다.

1) ¬

2 L

③ ⊏

④ =

(5)

⑤ П

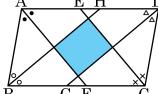
- 다음 중 평행사변형이 아닌 것은?
 - ① $\overline{AB} = \overline{CD}$, $\overline{AB} // \overline{CD}$
 - ② $\overline{AD} // \overline{BC}$, $\angle A = \angle B = 90^{\circ}$

 \bigcirc $\overline{AB} // \overline{CD}, \overline{AD} // \overline{BC}$

- (3) $\angle A = \angle C, \angle B = \angle D$
- $\overline{AB} = \overline{CD}, \overline{AD} = \overline{BC}$

A E H

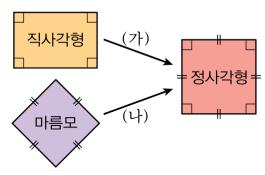
되는지 구하여라. (단, $\overline{AF} /\!\!/ \overline{EC}$, $\overline{BH} /\!\!/ \overline{GD}$)



사각형 ABCD 가 평행사변형일 때, 색칠한 부분이 어떤 사각형이

	ᆸᆞ			
--	----	--	--	--

조건으로 알맞은 것을 고르면?



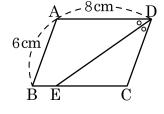
다음 그림에서 정사각형이 되기 위해 추가되어야 하는 (가). (나)의

① (가) 이웃하는 두 각의 크기가 같다.(나) 두 대각선이 서로 수직이다.

8.

- ② (가) 두 대각선의 길이가 같다.(나) 한 내각의 크기가 90°이다.
- ③ (가) 두 대각선이 서로 수직이다.(나) 이웃하는 두 변의 길이가 같다.
- ④ (가) 두 대각선의 길이가 같다.
- (나) 이웃하는 두 변의 길이가 같다.⑤ (가) 두 대각선이 서로 수직이다.
- (나) 이웃하는 두 각의 크기가 같다.

9. □ABCD는 AB = 6cm, AD = 8cm 인 평행사변형이고, DE는 ∠D의 이등분선일 때, CE의 길이를 구하면?

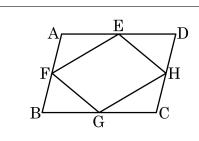


① 2cm ② 3cm ③ 4cm ④ 5cm ⑤ 6cm

다음 그림과 같은 평행사변형 ABCD 에서 \overline{AP} , \overline{AQ} 는 $\angle DAM$ 의 삼등분선이다. 점 M 이 점 B 를 출발하여 점 C 까지 움직일 때. \overline{AP} 가 이동한 각도는?

60°

11. 다음은 평행사변형 ABCD의 각 변의 중점을 차례로 E, F, G, H라 할때, □EFGH가 평행사변형임을 증명하는 과정이다. ¬~ㄷ에 들어갈것으로 옳은 것을 차례로 나열한 것은?



$$\triangle AEH$$
 와 $\triangle CGF$ 에서
$$\boxed{ } = \frac{1}{2} \overline{AD} = \frac{1}{2} \overline{BC} = \overline{CF} \cdots \bigcirc$$

$$\overline{AE} = \frac{1}{2} \overline{AB} = \frac{1}{2} \overline{DC} = \overline{CG} \cdots \bigcirc$$
 $\Box ABCD$ 는 평행사변형이므로

 $\angle HAE = \boxed{ } \qquad \cdots \bigcirc$

①, <u>○</u>, <u>○</u>에 의하여 △AEH ≡ △CGF (SAS 합동)

 $\therefore \overline{EH} = \overline{FG} \cdots \textcircled{2}$

 $\Delta \mathrm{EBF}$ 와 $\Delta \mathrm{GDH}$ 에서도 같은 방법으로하면

△EBF ≡ △GDH이므로

 $\therefore \overline{\mathrm{EF}} = \boxed{\qquad} \cdots \boxed{\bigcirc}$

②, ②에 의하여 □EFGH는 평행사변형이다.

 \bigcirc AD, \angle FGC, $\overline{\text{HG}}$

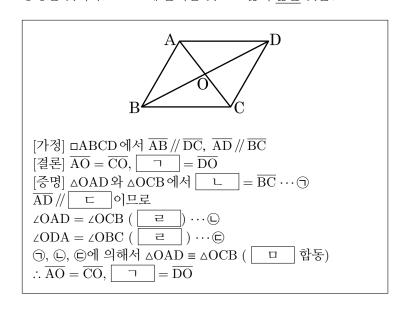
 \bigcirc \overline{AH} , \angle CFG, \overline{HG}

 $\ \ \overline{\mathrm{AD}}, \angle\mathrm{FGC}, \overline{\mathrm{CD}}$

4 \overline{AH} , $\angle FCG$, \overline{HG}

 \bigcirc \overline{AH} , $\angle FCG$, \overline{GD}

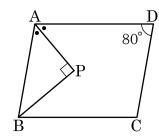
12. 다음은 '평행사변형에서 두 대각선은 서로 다른 것을 이등분한다.' 를 증명한 것이다. ㄱ~ㅁ에 들어갈 것으로 옳지 않은 것은?



① $\neg : \overline{BO}$ ② $\vdash : \overline{CD}$ ③ $\vdash : \overline{BC}$

④ ㄹ : 엇각 ⑤ ㅁ : ASA

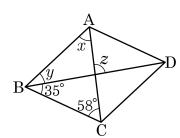
13. 다음 그림의 평행사변형 ABCD 에서 ∠PAB = ∠PAD, ∠APB = 90°, ∠D = 80° 일 때, ∠PBC 의 크기를 구하면?



① 30° ② 35° ③ 40° ④ 45° ⑤ 50°

14. 다음 그림의 평행사변형 ABCD 에서 $\overline{AB}//\overline{GH}$, $\overline{AD}//\overline{EF}$ 이다. $\angle B=55^\circ$ 일 때, $\angle DFI$ 의 크기를 구하여라.

15. 다음 그림과 같은 평행사변형 ABCD 에서 ∠DBC = 35°, ∠ACB = 58° 일 때, ∠x + ∠y + ∠z 의 크기는?



① 158° ② 162° ③ 168° ④ 174° ⑤ 180°

16.	다음은 '평행사변형의 두 대각선은 서로 다른 것을 이등분한다.' 를
	나타내는 과정을 섞어둔 것이다. 순서대로 기호를 나열하여라.

$$\bigcirc$$
 $\Box ABCD$ 에서 $\overline{AB}//\overline{DC}$, $\overline{AD}//\overline{BC}$

- (평행사변형의 성질 \triangle OAD 와 \triangle OCB 에서 $\overline{AD} = \overline{BC}$ (평행사변형의 성질 \bigcirc)
- △OAD = △OCB (ASA 합동) 이므로

```
▶ 답: _____
```

▶ 답: _____

17. 다음 중 □ABCD 가 평행사변형일 때, A H □ D □ EFGH 가 평행사변형이 되는 조건은? E G G

①
$$\overline{\mathrm{EH}} = \overline{\mathrm{FG}}$$

② $\angle FEG = \angle FGH$

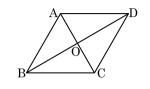
$$\odot \overline{EH} = \overline{FG}, \overline{EF} = \overline{HG}$$

④ ∠EFG = ∠GHE, ∠FEH = ∠FGH

$$\bigcirc$$
 $\overline{HG} = \overline{HE}, \overline{FG} = \overline{HG}$

되기 위한 조건으로 옳지 <u>않은</u> 것을 보기에 서 골라라.

18.



 $\overline{AB} = \overline{DC} = 4 \, \text{cm}$, $\overline{AD} = \overline{BC} = 6 \, \text{cm}$

보기

$$\bigcirc$$
 $\angle A = 110^{\circ}$, $\angle B = 70^{\circ}$, $\angle D = 70^{\circ}$

다음 그림의 □ABCD 가 항상 평행사변형이

©
$$\overline{OA} = \overline{OC}$$
, $\overline{OB} = \overline{OD}$ (단, 점 O는 두 대각선의 교점)

$$\bigcirc$$
 $\overline{AD}//\overline{BC}$, $\overline{AB}//\overline{DC}$

≥ 납:

9. \Box ABCD가 다음 조건을 만족할 때, 이 사각형은 어떤 사각형인가? $\overline{AB}//\overline{DC}, \ \overline{AB} = \overline{DC}, \ A = 90^\circ, \ \overline{AC} \bot \overline{BD}$

