- 1. 이차방정식 $x^2-6x+4=0$ 의 두 근을 α , β 라 할 때, α , β 의 등차중항을 구하여라.
 - ▶ 답:

▷ 정답: 3

근과 계수의 관계에 의하여 lpha+eta=6이므로 lpha,eta의 등차중항은

 $\frac{\alpha+\beta}{2} = \frac{6}{2} = 3$

- **2.** 양수 x, y에 대하여 $\sqrt{2} + 1$, x, $\sqrt{2} 1$, y가 이 순서로 등비수열을 이룰 때, x + y의 값은?
 - (4) $1 + 2\sqrt{2}$ (5) $4 + 2\sqrt{2}$
 - ① $-2\sqrt{2}$ ② $1-2\sqrt{2}$
- $34 2\sqrt{2}$

해설

x는 $\sqrt{2}+1$ 과 $\sqrt{2}-1$ 의 등비중항이므로

 $x^2=(\sqrt{2}+1)(\sqrt{2}-1)$ 이므로 $\therefore x = 1 (\because x > 0)$ 따라서 이 수열의 공비는 $\sqrt{2}-1$ 이므로 $y = (\sqrt{2} - 1)^2 = 3 - 2\sqrt{2}$ $\therefore x + y = 4 - \sqrt{2}$

 $3. \qquad \sum_{k=1}^{10} \log \frac{k+2}{k} \ \, \stackrel{\textstyle \frown}{\longrightarrow} \ \, \stackrel{\textstyle \frown}{\longrightarrow} \ \, ?$

① $\log 45$ ② $\log 50$ ③ $\log 55$ ④ $\log 60$ ⑤ $\log 66$

4. 등차수열을 이루는 세 수에 대하여 세 수의 합이 15이고, 제곱의 합은 91일 때, 세 수의 곱은?

1 85

② 90 ③ 95 ④ 100 ⑤ 105

해설 세 수를 5-d, 5, 5+d라 할 수 있다.

 $(5-d)^2 + 5^2 + (5+d)^2 = 91$

 $75 + 2d^2 = 91$

 $2d^2 = 16$

 $d=\pm 2\,\sqrt{2}$

(i) $d=2\sqrt{2}$ 일 때

세수: $5-2\sqrt{2}$, 5, $5+2\sqrt{2}$ $\therefore (5 - 2\sqrt{2}) \times 5 \times (5 + 2\sqrt{2})$

 $= (25 - 8) \times 5 = 17 \times 5 = 85$

(ii) $d = -2\sqrt{2}$ 일 때

세 수 : $5+2\sqrt{2}$, 5, $5-2\sqrt{2}$ $\therefore (5+2\sqrt{2}) \times 5 \times (5-2\sqrt{2})$

 $= (25 - 8) \times 5 = 85$

∴ 85

- ${f 5.}$ 등차수열 $\{a_n\}$ 에 대하여 $a_6+a_{11}+a_{15}+a_{20}=28$ 일 때, $a_1+a_2+a_{15}$ $a_3+\cdots+a_{25}$ 의 합을 구하여라.

▶ 답:

➢ 정답: 175

첫째항을 a, 공차를 d라 하면 $a_6 + a_{11} + a_{15} + a_{20} = 4a + 48d = 28$ a = 7 - 12d

 $a_1+a_2+\cdots+a_{25}$

 $=\frac{25\left\{2(7-12d)+(25-1)d\right\}}{2}=175$

- **6.** 50과 100 사이의 자연수 중 3의 배수의 총합은?
 - ① 1176 ② 1200 ③ 1225 ④ 1275 ⑤ 1300

해설 $50 \sim 100 사이의 3의 배수는$ 51 에서 시작하여 99로 끝나는공차가 3인 등차수열이므로 $\frac{(33-17+1)(51+99)}{2}$ $=\frac{17\cdot 150}{2}=1275$

7. 첫째항부터 제 n항까지의 합이 $S_n = 2n^2 - 25$ 으로 표시되는 수열 $\{a_n\}$ 의 음수인 항의 합은?

 \bigcirc -79

① -75 ② -76 ③ -77 ④ -78

 $(i) n \ge 2 일 때$ $a_n = S_n - S_{n-1}$

$$a_n = S_n - S_{n-1}$$

$$= (2n^2 - 25n) - \{2(n-1)^2 - 25(n-1)\}$$

$$= 4n - 27$$

(ii) n = 1일 때

 $a_1 = S_1$ 이므로 $a_1 = -23$

(i), (ii) 에서 $a_n = 4n - 27 \ (n \ge 1)$ 한편, $a_n = 4n - 27 < 0$ 에서 $n < \frac{27}{4} = 6.75$

따라서 첫째항부터 제 6항까지가 음수인 항이므로 음수인 항의 합은

 $S_6 = \frac{6}{2} \{2 \times (-23) + (6-1) \times 4\} = -78$

- 8. 서로 다른 세 실수 9, a, b는 이 순서대로 등차수열을 이루고, 세 수 a, 9, b는 이 순서대로 등비수열을 이룰 때, a+b의 값은?
 - $\bigcirc -\frac{45}{2}$ $\bigcirc -\frac{48}{2}$ $\bigcirc -\frac{41}{2}$ $\bigcirc -\frac{39}{2}$ $\bigcirc -\frac{37}{2}$

서로 다른 세 실수 9, *a*, *b*가 등차수열을 이루므로

 $a = \frac{9+b}{2} \cdot \dots \cdot \bigcirc$

세 수 a, 9, b가 등비수열을 이루므로 $9^2 = ab \cdots \oplus$

◌, ◌)을 연립하여 풀면 $81 = \frac{9+b}{2} \cdot b, \ b^2 + 9b - 162 = 0$

(b+18)(b-9) = 0∴ b = -18 또 b = 9

즉, b = -18일 때 $a = -\frac{9}{2}$ 이고, b = 9일 때 a = 9이때, a, b는 서로 다른 실수이므로

 $a = -\frac{9}{2}, \ b = -18$ $\therefore a + b = -\frac{45}{2}$

수열 $a(1+r) + a(1+r)^2 + a(1+r)^3 + \dots + a(1+r)^n$ 의 합은? (단, 9.

첫째항이 a(1+r), 공비가 1+r, 항수가 n인 등비수열의 합이므로

① $\frac{2a+4r^n}{r}$ ③ $\frac{a(1+r)+(1+r)^n}{r}$ ⑤ $\frac{a(1+r)-r^n+2}{r}$

 $1 + r \neq 1$ 즉, $r \neq 0$ 일 때, $S = \frac{a(1+r)\left\{(1+r)^n - 1\right\}}{(1+r)-1}$

- ${f 10}$. 두 수 ${\it A}$, ${\it B}$ 에 대하여 ${\it A}=2^{10}$, ${\it B}=5^{10}$ 일 때, 두 수 ${\it A}$, ${\it B}$ 의 곱 ${\it AB}$ 의 양의 약수의 총합을 A와 B의 식으로 나타낸 것은?
 - ① (2A+1)(5B+1) ② (5A-1)(5B-1)

 - ③ $\frac{1}{4}(2A+1)(5B-1)$ ④ $\frac{1}{4}(2A-1)(5B-1)$ ⑤ $\frac{1}{2}(2A-1)(5B-1)$

 $AB = 2^{10} \cdot 5^{10}$

따라서 AB의 양의 약수의 총합은 $(1+2+2^2+\cdots+2^{10})(1+5+5^2+\cdots+5^{10})$

 $= \frac{2^{11} - 1}{2 - 1} \times \frac{5^{11} - 1}{5 - 1}$

 $= (2 \cdot 2^{10} - 1) \times \frac{1}{4} (5 \cdot 5^{10} - 1)$ $= (2A - 1) \times \frac{1}{4} (5B - 1)$

 $= \frac{1}{4}(2A - 1)(5B - 1)$

11. $S = \sum_{k=1}^{10} k + \sum_{k=2}^{10} k + \sum_{k=3}^{10} k + \dots + \sum_{k=9}^{10} k + \sum_{k=10}^{10} k$ 일 때, $\frac{1}{5}S$ 의 값을 구하여라.

▶ 답:

➢ 정답: 77

 $S = \sum_{k=1}^{10} k + \sum_{k=2}^{10} k + \sum_{k=3}^{10} k + \cdots + \sum_{k=9}^{10} k + \sum_{k=10}^{10} k$ $= 1 + 2 + 3 + 4 + \cdots + 10$ $+2 + 3 + 4 + \cdots + 10$ $3 + 4 + \cdots + 10$ \vdots +10 $= 1 + 2^{2} + 3^{2} + 4^{2} + \cdots + 10^{2}$ $= \frac{10 \times 11 \times 21}{6} = 385$ $\therefore \frac{1}{5}S = 77$

12. 다음을 계산하여라.

 $1 \cdot 1 + 2 \cdot 4 + 3 \cdot 7 + \dots + 10 \cdot 28$

답:

▷ 정답: 1045

 $1 \cdot 1 + 2 \cdot 4 + 3 \cdot 7 + \dots + 10 \cdot 28$ $= \sum_{k=1}^{10} k \cdot (3k - 2)$ $= \sum_{k=1}^{10} (3k^2 - 2k)$ $= 3 \sum_{k=1}^{10} k^2 - 2 \sum_{k=1}^{10} k$ $= 3 \cdot \frac{10 \cdot 11 \cdot 21}{6} - 2 \cdot \frac{10 \cdot 11}{2}$ = 1155 - 110 = 1045

13. 첫째항부터 제 n항까지의 합 S_n 이 $S_n = 2n^2 - n + 3$ 인 수열 $\{a_n\}$ 에서 $\sum_{k=1}^5 a_{2k-1}$ 의 값은?

① 82 ② 84 ③ 86 ④ 88 ⑤ 90

 $S_n = 2n^2 - n + 3$ 이므로 $a_n = S_n - S_{n-1}$ $= 2n^2 - n + 3 - \{2(n-1)^2 - (n-1) + 3\}$ $= 4n - 3 \ (n \ge 2)$ $a_1 = S_1 = 2 - 1 + 3 = 4$ $\therefore \sum_{k=1}^5 a_{2k-1} = a_1 + a_3 + a_5 + a_7 + a_9$ = 4 + 9 + 17 + 25 + 33 = 88

= 4 + 9 + 17 + 25 + 33 =

14.
$$f(x) = \sqrt{x + \sqrt{x^2 - 1}}$$
일 때, $\sum_{k=1}^{99} \frac{1}{f(2x+1)}$ 의 값은?

① 8 ② $\sqrt{99} - 1$ ④ $\sqrt{99} + 1$ ⑤ 10

 $f(2x+1) = \sqrt{2x+1} + \sqrt{(2x+1)^2 - 1}$

 $= \sqrt{2x + 1 + \sqrt{4x^2 + 4x}}$ $= \sqrt{(x+1) + x + 2\sqrt{(x+1) \cdot x}}$

 $=\sqrt{x+1}+\sqrt{x}$ $\frac{1}{f(2x+1)} = \frac{1}{\sqrt{x+1} + \sqrt{x}} = \sqrt{x+1} - \sqrt{x}$

 $\sum_{k=1}^{99} (\sqrt{x+1} - \sqrt{x})$ $= \sqrt{2} - 1 + \sqrt{3} - \sqrt{2} + \dots + \sqrt{100} - \sqrt{99}$ $= \sqrt{100} - 1$

=10-1=9

15. 함수 $f(n) = 1^2 + 2^2 + 3^2 + \dots + n^2$ 에 대하여 $\sum_{k=1}^{20} \frac{2k+1}{f(k)}$ 의 값은?

$$f(n) = 1^{2} + 2^{2} + 3^{2} + \dots + n^{2}$$

$$= \sum_{k=1}^{20} k^{2} = \frac{n(n+1)(2n+1)}{6}$$
 이므로
$$\sum_{k=1}^{20} \frac{2k+1}{f(x)} = \sum_{k=1}^{20} \frac{2k+1}{\frac{k(k+1)(2k+1)}{6}}$$

$$= \sum_{k=1}^{20} \frac{6}{k(k+1)} = 6 \sum_{k=1}^{20} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$

$$= 6\left(1 - \frac{1}{21}\right) = 6 \times \frac{20}{21} = \frac{40}{7}$$

16. $\sum_{k=1}^{10} \left[\frac{2^k}{10} \right]$ 의 값을 구하여라. (단, [x]는 x보다 크지 않은 최대의 정수이다.)

▶ 답:

▷ 정답: 200

k에 1부터 10까지 차례로 대입하여 각 항의 값을 구해서 더하면 $\sum_{k=1}^{10} \left[\frac{2^k}{10} \right] = \left[\frac{2^1}{10} \right] + \left[\frac{2^2}{10} \right] + \left[\frac{2^3}{10} \right] + \left[\frac{2^4}{10} \right] + \dots + \left[\frac{2^{10}}{10} \right]$ = 0 + 0 + 0 + 1 + 3 + 6 + 12 + 25 + 51 + 102 = 200

17. 수열 1, 2, 5, 10, 17, 26,···의 제 20 항을 구하여라.

답:

▷ 정답: 362

18. 오른쪽 그림과 같이 연속한 자연수 $1, 2, 3, \cdots$ 을 나열할 때, 위에서 5번째 행의 왼쪽에서 11번째 열의 수는?

해설

① 113 ② 114 ③ 116

4 117

⑤ 119

수열로 표시하면

 $(1), (2, 3, 4), (5, 6, 7, 8, 9), \cdots$

로 묶을 수 있으며 제 n군의 끝항은

 $1+3+5+\cdots+(2n-1)=n^2$ 이므로 위에서 5번째 행, 왼쪽에서 11 번째 열의 수는 제 11군의 끝항에서 5번째에 있는 수이다.

 $\therefore 11^2 - 4 = 117$

19. 다음은 모든 자연수 n에 대하여 $3 + 5 + \cdots + (2n + 1) = n^2 + 2n$ 이 성립함을 수학적 귀납법으로 증명한 것이다. [⑤] 에 알맞은 것은?

(i) n=1일 때, (좌변)= 3, (우변)= $1^2 + 2 \cdot 1 = 3$ 이므로 등식이 성립한다. (ii) n = k일 때, 식이 성립한다고 가정하면 $3 + 5 + \dots + (2k + 1) = k^2 + 2k \dots$ 이다. ①의 양변에 2k + 3를 더하면 $3 + 5 + \dots + (2k + 1) + (2k + 3) = k^2 + 2k + (2k + 3) =$ $(k+1)^2 + 2(k+1)$ 이므로 [⑤] 일 때에도 성립한다. 따라서 (i), (ii)에 의해서 주어진 등식은 모든 자연수 n에 대하 여 성립한다.

④ n = k + 2 ⑤ n = 2k + 1

 \bigcirc 의 양변에 2k+3를 더하면

① n = -k + 1 ② n = -k + 2

 $3+5+\cdots+(2k+1)+(2k+3)$ $= k^2 + 2k + (2k+3) = (k+1)^2 + 2(k+1)$ 이므로 n = k + 1일 때에도 성립한다. 따라서 (i),(ii)에 의해서 주어진 등식은 모든 자연수 n에 대하여 성립한다.

20. 다음은 모든 자연수 n에 대하여 부등식 $4^n \le 2^{n-1}(1+3^n)$ 이 성립함을 수학적 귀납법으로 증명한 것이다.

```
(i) n=1일 때, (좌변)= 4, (우변)= 2^{1-1}(1+3)=4이므로
주어진 부등식은 성립한다.
(ii) n = k일 때 주어진 부등식이 성립한다고 가정하면
4^k \le 2^{k-1}(1+3^k)
양변에 4를 곱하면
4^{k+1} \le \boxed{(7)} (1+3^k)
=2^k(2+\overline{2\cdot 3^k)}
따라서, n = k + 1일 때에도 주어진 부등식은 성립한다.
(i), (ii)에 의하여 주어진 부등식은 모든 자연수 n에 대하여
성립한다.
```

위의 증명에서 (가), (나)에 알맞은 것은?

① $(7): 2^k, (4): 2^{k-1}(1+3^{k-1})$

- ② (가) : 2^k , (나) : $2^{k-1}(1+3^k)$
- ③ (가) : 2^k , (나) : $2^k(1+3^{k+1})$
- ④ (가) : 2^{k+1} , (나) : $2^{k-1}(1+3^k)$ ③ (가) : 2^{k+1} , (나) : $2^k(1+3^{k+1})$
- - 해설

(ii) n=k일 때 주어진 부등식이 성립한다고 가정하면

립한다.

 $4^k \le 2^{k-1}(1+3^k)$ 양변에 4를 곱하면 $4^{k+1} \le 2^{k+1} (1+3^k)$ $=2^k(2+2\cdot 3^k)$ $=2^k(1+1+2\cdot 3^k)<2^k(1+3^k+2\cdot 3^k)=\overline{2^k(1+3^{k+1})}$

따라서, n = k + 1일 때에도 주어진 부등식은 성립한다.

(i), (ii)에 의하여 주어진 부등식은 모든 자연수 n에 대하여 성

21. 다음 중 옳은 것을 고르면?

- 8의 세제곱근은 √8 한 개다.
 -1의 세제곱근 중 실수는 존재하지 않는다.
- 3n이 홀수일 때, 5의 n제곱근 중 실수인 것은 한 개다.
- ④ n이 짝수일 때, 16의 n제곱근 중 실수인 것은 ±3이다.
- ⑤ -81의 네제곱근 중 실수인 것은 ±3이다.

$x^n = a$ 인 실수 x의 개수는 다음과 같다.

해설

(i) n 이 홀수일 때, 실수 x는 √a로 1개 이다.

- (ii) n이 짝수일 때,
- $a > 0 \rightarrow$ 실수 $x = \pm \sqrt{a}$ 로 2개 이다.
- $a = 0 \rightarrow 실수 x 는 0 이므로 1개 이다.$ $a < 0 \rightarrow 실수 x 는 존재하지 않는다.$
- ① n = 3이므로 실수인 세제곱근은 1개 ② n = 3이므로 실수인 세제곱근은 1개
- ③ n이 홀수이므로 실수인 n제곱근은 1개
- ④ n이 짝수이고 16 > 0 이므로 실수인 n제곱근은 2개
- (3) n = 4 이고, -81 < 0 이므로 실수인 <math>n제곱근은 존재하지
- 않는다.

22. a > 0, b > 0일 때, $\sqrt{\frac{b}{a}\sqrt{\frac{a}{b}}\sqrt{\frac{b}{a}}}$ 을 간단히 하면?

해설
$$\sqrt{\frac{b}{a}\sqrt{\frac{a}{b}\sqrt{\frac{b}{a}}}}$$

$$= \sqrt{\frac{b}{a}} \times \sqrt[4]{\frac{a}{b}} \times \sqrt[8]{\frac{b}{a}}$$

$$= \sqrt{\frac{b}{a}} \times \sqrt[4]{\frac{a}{b}} \times \sqrt[8]{\frac{b}{a}}$$

$$= \frac{b^{\frac{1}{2}}}{a^{\frac{1}{2}}} \times \frac{a^{\frac{1}{4}}}{b^{\frac{1}{4}}} \times \frac{b^{\frac{1}{8}}}{a^{\frac{1}{8}}}$$

$$= a^{\frac{1}{4} - \frac{1}{2} - \frac{1}{8}} \times b^{\frac{1}{2} + \frac{1}{8} - \frac{1}{4}} = a^{-\frac{3}{8}} \times b^{\frac{3}{8}}$$

$$= a^{\frac{3}{8}} = \sqrt[8]{b^{3}}$$

$$= \frac{b^{\frac{3}{8}}}{a^{\frac{3}{8}}} = \sqrt[8]{b^{3}}$$

$$= \sqrt[8]{a^{3}}$$

23.
$$\left(\frac{2}{\sqrt[3]{9} + \sqrt[3]{3} + 1} + \frac{4}{\sqrt[3]{9} - \sqrt[3]{3} + 1}\right)^3$$
을 계산하면?

② 15 ③ 18 ④ 21 ① 12

324

$$(\sqrt[3]{3} - 1)(\sqrt[3]{9} + \sqrt[3]{3} + 1) = (\sqrt[3]{3})^3 - 1 = 2$$
이므로
$$\frac{2}{\sqrt[3]{9} + \sqrt[3]{3} + 1} = \sqrt[3]{3} - 1$$

$$(\sqrt[3]{3} + 1)(\sqrt[3]{9} - \sqrt[3]{3} + 1) = (\sqrt[3]{3})^3 + 1 = 4$$
이므로

$$\frac{4}{\sqrt[3]{9} - \sqrt[3]{3} + 1} = \sqrt[3]{3} + 1$$

$$\begin{array}{|c|c|} \hline & \checkmark 9 - \sqrt{3} + 1 \\ & \therefore \left(\frac{2}{\sqrt[3]{9} + \sqrt[3]{3} + 1} + \frac{4}{\sqrt[3]{9} - \sqrt[3]{3} + 1} \right)^3 \\ & = (\sqrt[3]{3} - 1 + \sqrt[3]{3} + 1)^3 = (2 \cdot \sqrt[3]{3})^3 = 24 \end{array}$$

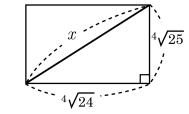
24. $\frac{a^x + a^{-x}}{a^x - a^{-x}} = 2$ 일 때, $\frac{a^{2x} + a^{-2x}}{a^{2x} - a^{-2x}}$ 의 값은?(단, a > 0)

① $\frac{3}{2}$ ② $\frac{4}{3}$ ③ $\frac{5}{4}$ ④ $\frac{6}{5}$ ⑤ $\frac{7}{6}$

해설 $\frac{a^{x} + a^{-x}}{a^{x} - a^{-x}} = 2 \, \text{에서} \, a^{x} + a^{-x} = 2(a^{x} - a^{-x}) \, \text{이므로}$ $a^{x} = 3a^{-x} \quad \therefore \quad a^{2x} = 3$

 $\therefore \frac{a^{2x} + a^{-2x}}{a^{2x} - a^{-2x}} = \frac{3 + \frac{1}{3}}{3 - \frac{1}{3}} = \frac{5}{4}$

25. 가로와 세로의 길이가 각각 $\sqrt[4]{24}$, $\sqrt[4]{25}$ 인 직사각형의 대각선의 길이는?



해설

- ① $\sqrt{5} + \sqrt{2}$ ② $\sqrt{5} \sqrt{2}$ ③ 3

(4) $\sqrt{3} - \sqrt{2}$ (5) $\sqrt{3} + \sqrt{2}$

 $= \sqrt{\sqrt{24} + \sqrt{25}}$ $= \sqrt{2\sqrt{6} + 5}$

 $x = \sqrt{(\sqrt[4]{24})^2 + (\sqrt[4]{25})^2}$

 $=\sqrt{(\sqrt{3}+\sqrt{2})^2}$

 $\therefore x = \sqrt{3} + \sqrt{2}$

- **26.** 등비수열 $\{a_n\}$ 에서 첫째항부터 제 n 항까지의 합 S_n 을 $S_n=2^{n+1}-3(n=1,\ 2,\ 3,\ \cdots)$ 이라 하자. $a_1+a_3+a_5+\cdots+a_{19}$ 의 값은?

 - ① $\frac{2^{20}}{5}$ ② $\frac{2^{21} + 5}{4}$ ③ $\frac{2^{21} 5}{3}$ ④ 2^{20} ③ $2^{21} 5$

 $a_1 + a_3 + a_5 + \dots + a_{19} = 1 + 2^3 + 2^5 + \dots + 2^{19}$

해설 $a_n = S_n - S_{n-1}$ = $(2^{n+1} - 3) - (2^n - 3) = 2^n (n \ge 2)$

 $S_1 = 2^2 - 3 = 1$ 이므로 $\therefore a_n = 2^n (n \ge 2), a_1 = 1$

 $= 1 + \frac{2^3 \left\{ (2^2)^9 - 1 \right\}}{4 - 1}$ $= 1 + \frac{2^{21}}{3} - \frac{8}{3} = -\frac{5}{3} + \frac{2^{21}}{3}$

27. 모든 항의 값이 자연수이고 $a_1 < a_2 < a_3 \cdots$ 인 수열 $\{a_n\}$ 에 대하여, $a_{n+2} = a_n + a_{n+1} (n \ge 1)$ 이 성립하고 $a_6 = 62$ 라 할 때, $a_1 + a_2$ 의 값을 구하여라.

답:

▷ 정답: 14

 $a_{n+2} = a_n + a_{n+1} \, \mathsf{oll} \, \mathcal{A}$

 $a_3 = a_1 + a_2$ $a_4 = a_2 + a_3 = a_2 + a_3$

 $a_4 = a_2 + a_3 = a_2 + (a_1 + a_2) = a_1 + 2a_2$

 $a_5 = a_3 + a_4 = (a_1 + a_2) + (a_1 + 2a_2) = 2a_1 + 3a_2$ $a_6 = a_4 + a_5 = (a_1 + 2a_2) + (2a_1 + 3a_2) = 3a_1 + 5a_2$

∴ 3a₁ + 5a₂ = 62
 a₁, a₂ 의 값은 자연수이고 a₁ < a₂이므로

 $a_1 = 4, \ a_2 = 10$ $\therefore \ a_1 + a_2 = 14$

28. $\sqrt[n]{7} = 100$ 일 때, $\frac{10^n - 10^{-n}}{10^n + 10^{-n}}$ 의 값은? (단, n은 양의 정수이다.)

① $\frac{1}{3}$ ② $\frac{2}{3}$ ③ $\frac{3}{4}$ ④ $\frac{4}{5}$ ⑤ $\frac{6}{7}$

 $\sqrt[n]{7} = 100$ 의 양변을 n제곱하면

7 = $100^n = 10^{2n}$ $\frac{10^n - 10^{-n}}{10^n + 10^{-n}}$ 의 분자와 분모에 10^n 을 곱하면

 $\frac{(10^{n} - 10^{-n})10^{n}}{(10^{n} + 10^{-n})10^{n}} = \frac{10^{2n} - 1}{10^{2n} + 1}$ $= \frac{7 - 1}{7 + 1}$ $= \frac{6}{8} = \frac{3}{4}$

29. $\log_{10} 91000 = a$, $\log_{10} 0.0011 = b$ 라 할 때, $\log_{10} \frac{91}{11}$ 을 a, b로 나타 내면?

① -a+b+7 ② a-b-7 ③ a-b+1 ④ $\frac{b+4}{a-3}$ ⑤ $\frac{a-3}{b+4}$

 $\log_{10} 91000 = 3 + \log_{10} 91 = a$

 $\begin{array}{l} \therefore \ \log_{10} 91 = a - 3 \\ \log_{10} 0.0011 = -4 + \log_{10} 11 = b \\ \therefore \log_{10} 11 = b + 4 \end{array}$

 $\log_{10} \frac{91}{11} = \log_{10} 91 - \log_{10} 11$ = a - 3 - (b + 4) = a - b - 7

- 30. 어느 나라의 인구는 2014년부터 5년간 전년도에 비해 매년 10% 씩 감소하였는데, 이 나라 정부의 지속적인 출산 장려 정책의 효과로 2019년부터는 전년도에 비해 매년 5% 씩 증가할 것이 예상된다고 한다. 이와 같은 추세로 인구가 계속 증가세를 보일 때, 처음으로 2014년의 인구보다 많아지려면 최소 몇 년간 증가해햐 하는가? (단, $\log 3 = 0.4771, \log 1.05 = 0.0212$ 이다.)
 - ② 15년 ③ 13년

④11년

⑤ 9년

2014년의 인구를 T라 할 때 5년 후 인구는 $T \times 0.9^5$ 또, 올해부터 전년도에 비해 매년 5% 씩 n년간 증가한 후 인구는

 $T \times 0.9^5 \times 1.05^n$ 이므로 $T\times 0.9^5\times 1.05^n\geq T$

 $5\log 0.9 + n\log 1.05 \geq 0$ $5(2 \times 0.4771 - 1) + n \times 0.0212 \ge 0$

 $n \ge \frac{2290}{212} \leftrightarrows 10.8$

따라서 최소 11년간 증가해야 한다.

① 17년

 ${f 31.}$ 한 환경보호단체에서는 호수 ${f A}$ 의 오염물질에 대한 다음과 같은 내용의 보고서를 작성하였다.

현재 호수 A에는 산업폐기물에 의한 250톤의 오염물질이 있다. 또한 매년 $\frac{50}{3}$ 톤의 요염물질이 새로 쌓인다. 이 때, 이 오염물질들은 매년 광산화 (햇빛에 의한 자연 정화)에 의하여 10%씩 줄어든다. … (이하 생략)

④ 182톤 ⑤ 192톤

① 152톤

② 162톤

③ 172톤

지금부터 n년 후 호수에 남이 있는 오염물질의 양을 a톤이라고

하면 수열 $\{a_n\}$ 을 다음과 같이 나타낼 수 있다.

$$\begin{cases} a_1 = \left(250 + \frac{50}{3}\right) \times 0.9 = 240 \\ a_{n+1} = \left(a_n + \frac{50}{3}\right) \times 0.9 = 0.9a_n + 15 \\ a_{n+1} = 0.9a_n + 15 를 변형하면 \\ a_{n+1} - 150 = 0.9(a_n - 150)$$
이므로

즉,

수열 $\{a_n-150\}$ 은 첫째항이 $a_1-150=240-150=90$ 이고, 공비가 0.9인 등비수열이다.

 $a_n - 150 = 90(0.9)^{n-1}$ $\therefore a_n = 90(0.9)^{n-1} + 150$

따라서 지금부터 20년 후 호수에 남아 있는 오염물질의 양은

 $a_{20} = 90(0.9)^{19} + 150 = 90 \times 0.135 + 150 = 162.5$ (톤)

32. 실수 a에 대하여 [a]는 a보다 크지 않은 최대 정수를 나타낸다. 다음 조건을 동시에 만족하는 모든 실수 x의 값의 곱을 M이라 할 때, $\log_{10} M^4$ 의 값을 구하여라.

① $[\log_{10} x] = 1$ ① $\log_{10} x - \log_{10} \frac{1}{x^3} = [\log_{10} x] - \left[\log_{10} \frac{1}{x^3}\right]$

답:

➢ 정답: 22

조건 ①에서 $[\log_{10}x] = 1$ 이므로 $\log_{10}x$ 의 지표는 1이다. $\therefore 1 \leq \log_{10}x < 2$ 조건 ②에서 $\log_{10}x - [\log_{10}x] = \log_{10}\frac{1}{x^3} - \left[\log_{10}\frac{1}{x^3}\right]$ 이므로 $\log_{10}x$ 와 $\log_{10}\frac{1}{x^3}$ 의 가수가 같다 즉, $\log_{10}x + 3\log_{10}x = (정수)$ $\therefore 4\log_{10}x = (정수)$ ①에서 $4 \leq 4\log_{10}x < 8$ $4\log_{10}x = 1, \frac{5}{4}, \frac{6}{4}, \frac{7}{4}$ $\therefore x = 10, 10^{\frac{5}{4}}, 10^{\frac{6}{4}}, 10^{\frac{7}{4}}$ 따라서, x의 값을 모두 꼽하면 $M = 10^{1+\frac{5}{4}+\frac{6}{4}+\frac{7}{4}} = 10^{\frac{11}{2}}$ $\therefore \log_{10}M^4 = 22$ 33. 6개월에 5%의 이율로 복리로 계산하는 예금에 5년 간 예치하여 찾을 때 원리합계는 원금의 몇 배인지 구하여라. (소수 셋째 자리에서 반올 림하여 소수 둘째 자리까지 구하고, 아래의 상용로그표를 이용하여라.)

1.0 1.2 3.4 5.6 7.8 8.9 1.0 4.8 1.2 1.7 2.1 2.5 2.9 3.3 1.6 2.2122 .2148 .2175 3.5 8.1 1.1 3.1 6.1 1.8 2.1	스	0	1	0	3	4	-			비 례 부 분							
	-	U	1	Z	0	4	Э	•••	1	2	3	4	5	6	7	8	9
2 5 6 11 19 16 19 91 6	1.0	•••	•••	.0086	.0128	.0170	.0212		4	8	12	17	21	25	29	33	37
$1.6 \cdots \cdots .2095 .2122 .2148 .2175 \cdots 5 5 8 11 15 16 18 21 21 21 21 21 21 21$	1.6	• • • •	• • • •	.2095	.2122	.2148	.2175		3	5	8	11	13	16	18	21	27

▶ 답: ▷ 정답: 1.63

처음 예금을 a원이라 하면

해설

6개월 후 예금 : 1.05a 12개월 후 예금 : $1.05 \times 0.05a = 1.05^2a$

60개월 후 예금 : $1.05^{10}a$ 즉 1.05¹⁰을 구하면 된다.

 $\log 1.05^{10} = 10 \times \log 1.05$ $=10\times0.0212$

= 0.212

그런데 $\log 1.62 = 0.2095$

log 1.63 = 0.2122 이므로

x: 0.01 = 0.0025: 0.0027 $\therefore x = 0.0092 = 0.009$

 $1.05^{10} \stackrel{\diamond}{=} 1.62 + 0.009 = 1.629 = 1.63$ 따라서 원리합계는 원금의 1.63 배이다.