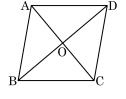
- 1. 다음 그림과 같은 평행사변형 ABCD 가 마름 모가 되기 위한 조건은?



 \bigcirc $\overline{AC} \bot \overline{BD}$

① $\overline{AC} \perp \overline{BD}$ ② $\overline{AC} \perp \overline{AD}$ ③ $\angle B + \angle C = 180^{\circ}$ ④ $\overline{BD} = 2\overline{OD}$

 \bigcirc $\angle A = \angle C$

해설

① : 마름모는 대각선이 서로를 수직이등분한다.

③, ④, ⑤ : 평행사변형의 성질

다음 그림에서 □APCD 는 마름모이 2. 다. $\overline{AB} = \overline{BC}$ 일 때, $\angle BCD$ 의 크기는?

① 69° ③ 76°

⑤ 82°

479°

② 73°

 $P^{\downarrow 140^{\circ}}$

해설

 $\overline{\mathrm{AC}}$ 를 이으면 $\angle BCA = (180^{\circ} - 62^{\circ}) \div 2 = 59^{\circ}$

 $\angle ACD = (180^{\circ} - 140^{\circ}) \div 2 = 20^{\circ}$

 $\therefore \angle BCD = \angle BCA + \angle ACD = 79^{\circ}$

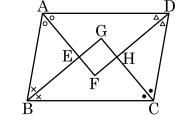
- **3.** 다음 중 마름모에 대한 설명으로 옳지 <u>않은</u> 것은?
 - 두 대각선이 직교한다.
 네 변의 길이가 모두 같다.

 - ③ 대각의 크기가 서로 같다.
 - ④ 두 대각선이 서로 다른 것을 이등분한다. ⑤ 네 각의 크기가 모두 같다.

네 각의 크기가 모두 같은 사각형은 정사각형과 직사각형이다.

해설

4. 다음 그림과 같이 평행사변형 ABCD에서 네 내각의 이등분선을 연결하여 □EFGH를 만들었을 때, □EFHG는 어떤 사각형인가?



- 평행사변형
 정사각형
 - ② 사다리꼴⑤ 마름모

해설

∠ABC + ∠BAD = 180°이므로 ∠GBA + ∠FAB = 90°이고,

△ABE에서 ∠AEB = 180° - 90° = 90°이다. 마찬가지로 ∠EGH = ∠EFH = ∠CHD = 90°이므로 □EFGH 는 직사각형이다.

- $\square ABCD$ 에서 $\overline{AD} /\!/ \overline{BC}$ 이고 $\overline{AB} = \overline{AD}$ 일 **5.** 때, x 의 크기는?

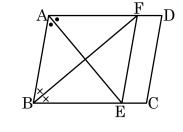
 - ① 65° ② 68° ⑤80°
- 3 70°

④ 75 °

해설 $\angle \mathrm{DBA} = \angle \mathrm{ADB} = (180\,^{\circ} - 130\,^{\circ}) \div 2 = 25\,^{\circ}$

x = 180° - (25° + 75°) = 80°

 ${f 6.}$ 다음 그림과 같은 평행사변형 ${
m ABCD}$ 에서 ${
m \angle A}$ 의 이등분선이 ${
m \overline{BC}}$ 와 만나는 점을 E, $\angle B$ 의 이등분선이 \overline{AD} 와 만나는 점을 F라 할 때, □ABEF는 어떤 사각형인가?

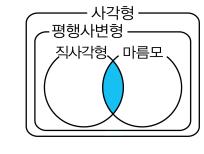


- ① 평행사변형 ② 사다리꼴
- ④ 직사각형⑤ 정사각형
- ③마름모

해설

대각선이 내각의 이등분선인 사각형은 마름모이다.

7. 다음 그림에서 색칠한 부분에 속하는 사각형의 정의로 옳은 것은?



- ① 두 쌍의 대변이 각각 평행한 사각형② 네 각의 크기가 모두 같은 사각형
- ③ 네 변의 길이가 모두 같은 사각형
- ④ 네 각의 크기가 모두 같고, 네 변의 길이가 모두 같은 사각형
 ⑤ 한 쌍의 대변이 평행한 사각형

색칠한 부분은 직사각형과 마름모의 공통된 부분으로 정사각형

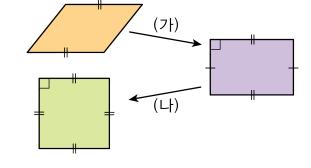
이다.

- 8. 다음 설명 중 옳은 것을 모두 고르면?
 - ① 평행사변형은 사각형이다.
 - ② 사다리꼴은 평행사변형이다. ③ 정사각형은 마름모이다.
 - ④ 직사각형은 정사각형이다.
 - ⑤ 사다리꼴은 직사각형이다.

② 평행사변형은 사다리꼴이다.

- ③ 정사각형은 마름모이고, 직사각형이다. ④ 정사각형은 마름모이고, 직사각형이다.
- ⑤ 직사각형은 사다리꼴이다.

다음 그림을 보고 (개, (내 에 들어갈 조건을 바르게 나타낸 것은? 9.



(내): 한 내각의 크기가 90°이다.

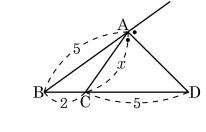
① (개): 두 대각선이 서로 수직 이등분한다.

- ② (개: 한 내각의 크기가 90°이하이다.
- (나): 네 변의 길이가 모두 같다. ③ (개 : 한 내각의 크기가 90°이다.
 - (나): 두 대각선이 서로 직교한다.
- ④ (개): 두 대각선이 서로 직교한다. (내): 두 대각선의 길이가 같다.
- ⑤ (개): 두 대각선의 길이가 같다.
- (내): 한 내각의 크기가 90°이다.

평행사변형이 직사각형이 되려면 한 내각의 크기가 90°이거나

두 대각선의 길이가 같으면 된다. 직사각형이 정사각형이 되려면 두 대각선이 서로 직교하거나 네 변의 길이가 모두 같으면 된다.

10. 다음 그림의 $\triangle ABC$ 에서 \overline{AD} 가 $\angle A$ 의 외각의 이등분선이다. 이 때, *x* 의 값은?

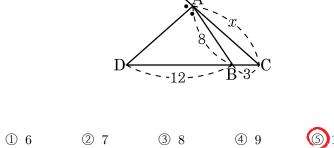


① 3 ② $\frac{22}{7}$ ③ $\frac{23}{7}$ ④ $\frac{24}{7}$ ⑤ $\frac{25}{7}$

해설

다음 그림에서 $\overline{
m AD}\,/\!/\,\overline{
m FC}$ 가 되도록 직선 FC를 그으면 $\angle
m AFC=$ ∠ACF $\therefore \overline{AF} = \overline{AC} = x$ $\triangle ABD$ 에서 $\overline{AB}: \overline{AF} = \overline{BD}: \overline{CD}$ 이므로 5: x = 7:5 $\therefore \ x = \frac{25}{7}$

11. 다음 그림에서 $\overline{\mathrm{AD}}$ 가 $\angle \mathrm{A}$ 의 외각의 이등분선일 때, x 의 값은?



③ 8

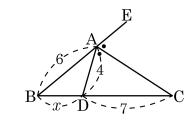
· 9

③10

x:8=(12+3):12 이므로

x = 10

12. 다음 그림과 같이 $\overline{\mathrm{AD}}$ 가 $\angle \mathrm{EAC}$ 의 이등분선일 때, x 의 길이는?



① $\frac{5}{2}$ ② 3 ③ $\frac{7}{2}$ ④ 4 ⑤ $\frac{9}{2}$

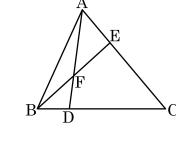
 $\overline{\mathrm{AB}}:\overline{\mathrm{AC}}=\overline{\mathrm{BD}}:\overline{\mathrm{CD}}$

6:4 = (x+7):74x + 28 = 42

4x = 14

 $\therefore x = \frac{7}{2}$

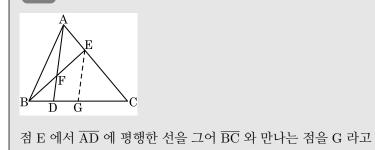
13. 다음 그림과 같이 변 AC 의 삼등분 점 중 점 A 에 가까운 점을 E, \overline{BE} 의 중점을 F , 직선 AF 와 \overline{BC} 와의 교점을 D 라 할 때, $\triangle ABC$ 와 ΔABD 의 넓이의 비를 바르게 구한 것은?.



① 2::1 ② 3:1

34:1

④ 3:2 ⑤ 4:3



하면 $\overline{BD} = \overline{DG}$ $\overline{\mathrm{DG}}:\overline{\mathrm{GC}}=\overline{\mathrm{AE}}:\overline{\mathrm{EC}}=1:2$

 $\overline{\mathrm{BD}}:\overline{\mathrm{DC}}=1:3$ $\overline{\mathrm{BC}}:\overline{\mathrm{DC}}=4:3$

 $\therefore \triangle ABC: \triangle ACD = 4:3, \ \triangle ABC: \triangle ABD = 4:1$

14. 다음 그림에서 $\overline{\rm DE}//\overline{\rm FG}//\overline{\rm BC}$ 이다. $\Delta {\rm AFG}$ 와 □FBCG 의 넓이의 비를 바르게 구한 것 은? (단, Q는 ΔAFG 의 무게중심이며 P는

△ABC의 무게중심이다.)

① 2:3

② 3:4

3 4:5

4 5:6

⑤ 6:7

 $\overline{\mathrm{BC}}$ 의 중점을 M 이라 하면

 $\overline{AQ}:\overline{QP}=\overline{AP}:\overline{PM}=2:1$ $\overline{AQ} = 2\overline{QP}, \overline{AP} = 3\overline{QP}$

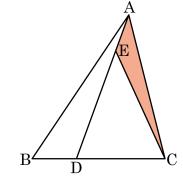
 $\overline{PM} = \frac{1}{2}\overline{AP} = \frac{3}{2}\overline{QP}$

 $\overline{AQ}: \overline{QP}: \overline{PM} = 2\overline{QP}: \overline{QP}: \overline{PM} = B^2$ $2\overline{\mathrm{QP}}:\overline{\mathrm{QP}}:\frac{3}{2}\overline{\mathrm{QP}}=4:2:3$

△ADE ∽ △AFG ∽ △ABC 이고 그 닮음비가 4:6:9 이므로 각 삼각형의 밑변과 높이의 길이의 비도 4:6:9 이며 넓이의 비는 $4^2:6^2:9^2$ 이다.

 $\therefore \triangle AFG : \Box FBCG$ $= \triangle AFG : (\triangle ABC - \triangle AFG) = 36 : 45 = 4 : 5$

15. $\triangle ABC$ 의 넓이가 $240\,\mathrm{cm^2}$ 이고 $\overline{BD}:\overline{DC}=1:2,\overline{AE}:\overline{ED}=1:3$ 일 때, $\triangle AEC$ 의 넓이를 구하면?



 $\textcircled{1} \ \ 30\,\mathrm{cm}^2$ $42 \,\mathrm{cm}^2$ $2 36 \,\mathrm{cm}^2$ \bigcirc 46 cm²

 $\boxed{3}40\,\mathrm{cm}^2$

$$\triangle AEC = \frac{1}{4} \times \triangle ADC$$

$$= \frac{1}{4} \times \frac{2}{3} \times \triangle ABC$$

$$= \frac{1}{6} \times \triangle ABC$$

$$= \frac{1}{6} \times 240 = 40 \text{ (cm}^2\text{)}$$

16. 다음 그림과 같은 평행사변형 ABCD의 두 변 BC, CD의 중점을 각각 E, F라 하고, \overline{BD} 와 \overline{AE} , \overline{AF} 와의 교점을 각각 P, Q라 한다. $\overline{\mathrm{BD}}=12\mathrm{cm}$ 일 때, $\overline{\mathrm{PQ}}$ 의 길이를 구하면?



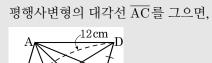
4 4cm

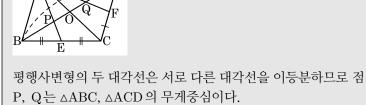
① 2cm

해설

② 2.5cm \bigcirc 5cm

③ 3cm

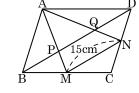




 $\overline{BO}=6\mathrm{cm}$ 이고, $\overline{BP}:\overline{PO}=2:1$ 이므로, $\overline{PO}=2\mathrm{cm}$, 마찬가지 로 $\overline{\mathrm{QO}} = 2\mathrm{cm}$ 이다. 따라서 $\overline{\mathrm{PQ}} = 4\mathrm{cm}$ 이다.

17. 평행사변형 ABCD 에서 점 M, N 은 각각 BC, DC 의 중점이고 MN = 15 cm 일 때, PQ 의 길이를 구하면?

① 8 cm ② 10 cm ③ 11 cm

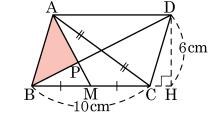


점 P, Q 는 각각 \triangle ABC, \triangle ACD 의 무게중심이므로 $\overline{BP}=\overline{PQ}=\overline{QD}$ 이고 $\overline{BD}=2\overline{MN}=30\,\mathrm{cm}$ 이므로

파라서 $\overline{PQ} = \frac{1}{3}\overline{BD} = 10 \text{ cm}$

Ů

 $oldsymbol{18}$. 다음 그림의 평행사변형 $oldsymbol{ABCD}$ 에서 변 $oldsymbol{BC}$ 의 중점을 $oldsymbol{M}$ 이라 하고, 대각선 BD 와 선분 AM 의 교점을 P 라 할 때, \triangle ABP 의 넓이는?



4 12cm^2

- \bigcirc 8cm² \bigcirc 15cm²
- 310cm^2

 \overline{AC} 와 \overline{BD} 의 교점을 Q 라 하면, \overline{AM} 과 \overline{BQ} 는 $\triangle ABC$ 의 중선이 므로 점 P 는 이 삼각형의 무게중심이 된다. 따라서 무게중심의 $\triangle ABP = \frac{1}{3} \triangle ABC = \frac{1}{3} \times \frac{1}{2} \times 10 \times 6 = 10 \text{(cm}^2)$ 이다.

19. 5 만분의 1 지도에서 5cm 거리에 있는 두 지점의 실제 거리를 Am , 실제 거리가 500m 인 두 지점의 지도상의 거리를 Bm 라고 할 때, A + 100B 의 값은?

① 2501 ② 251 ③ 2510 ④ 2600 ⑤ 260

(실제 거리) = $5 \times 50000 = 250000(\,\mathrm{cm}) = 2500(\,\mathrm{m})$ 이므로 A = 2500 (지도상의 거리) = $500 \times \frac{1}{50000} = 0.01(\,\mathrm{m})$ 이므로

B = 0.01

 $\therefore A + 100B = 2501$

해설

- **20.** 터널의 길이가 2 km 이다. 이 터널의 길이를 어떤 지도에서 40 cm 로 나타날 때, 같은 지도 상에서 24 cm 로 나타나는 터널의 실제 길이는?
 - ① 1km
- ② 1.1km
- ③1.2km
- ④ 1.3km

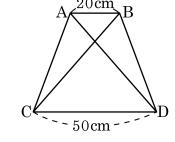
해설

⑤ 1.4km

축척을 구하면 40cm : 200000cm = 1 : 5000 이므로 24 cm 의

실제 거리는 $24 \,\mathrm{cm} \times 5000 = 120000 \,\mathrm{cm} = 1200 \,\mathrm{m} = 1.2 \,\mathrm{km}$ 이다.

21. A, B 두 지점 사이의 거리를 구하기 위해 200 m 떨어진 C,D 두 곳에서 A, B 지점을 보고 축도를 그렸다. 200 m 가 축도에서 50 cm 로 나타내어질 때, 점 A, B 사이의 거리를 구하여라.



① 80 m ④ 110 m

⑤ 120 m

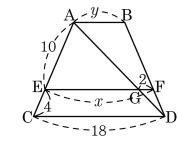
② 90 m

③ 100 m

 $20000 : 50 = \overline{AB} : 20$ $50\overline{AB} = 400000$

 $\therefore \overline{AB} = 8000 \, \text{cm} = 80 \, \text{m}$

 ${f 22}$. 다음 그림에서 ${f \overline{AB}}//{f \overline{EF}}//{f \overline{CD}}$ 일 때, xy 의 값은?



① 60 ② 70 ③ 80

490

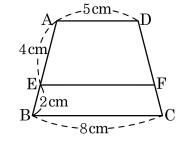
⑤ 100

 $\triangle ACD$ 에서 $\overline{AE}:\overline{AC}=\overline{EG}:\overline{CD}$ 10:14=x:18

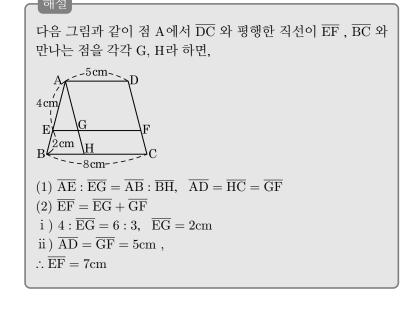
 $\triangle ADB$ 에서 $\overline{AD}:\overline{GD}=\overline{AB}:\overline{GF}$ 14:4=y:2

y = 7 $\therefore xy = \frac{90}{7} \times 7 = 90$

${f 23.}$ 다음 그림에서 ${f AD}//{f EF}//{f BC}$ 일 때, ${f EF}$ 의 길이는?



①7 cm ② 8 cm ③ 9 cm ④ 10 cm ⑤ 11 cm

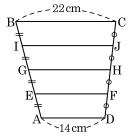


${f 24.}$ 그림을 보고 $\overline{ m EF}$ 와 $\overline{ m IJ}$ 의 길이의 합을 구하 면? (단, $\overline{\mathrm{AD}}$ // $\overline{\mathrm{BC}}$)

① 36 cm 49 cm

② 37 cm ③ 38 cm

 \bigcirc 40 cm



해설

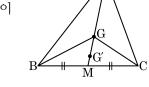
 $\overline{AE} = a$ 라고 하면 $\overline{GH} = \frac{22 \times 2a + 14 \times 2a}{2a + 2a} = \frac{22 + 14}{2} = 18 \text{(cm)}$ $\overline{EF} = \frac{18 \times a + 14 \times a}{a + a} = \frac{18 + 14}{2} = 16 \text{(cm)}$ $\overline{IJ} = \frac{22 \times a + 18 \times a}{a + a} = \frac{22 + 18}{2} = 20 \text{(cm)}$

$$\overline{LI} = \frac{22 \times a + 18 \times a}{2} = \frac{22 + 18}{2} = 20(cm)$$

$$IJ = \frac{1}{a+a} = \frac{1}{2} = 20 \text{ (cm)}$$

$$\overline{IJ} + \overline{EF} = 20 + 16 = 36 \text{ (cm)}$$

- 25. 다음 그림에서 \overline{AM} 은 $\triangle ABC$ 의 중선이고, 점 G, G'는 각각 $\triangle ABC$ 와 $\triangle GBC$ 의 무게 중심이다. $\overline{AG}=18\,\mathrm{cm}$ 일 때, $\overline{GG'}$ 의 길이는?
 - ① 4 cm ② 4.5 cm ③ 6 cm
 - 4 7 cm 5 7.5 cm

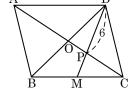


$$\label{eq:additive} \begin{split} \overline{AG} : \overline{GM} &= 2: 1 = 18: \overline{GM} \\ \therefore \overline{GM} &= 9 (\,\mathrm{cm}) \ , \end{split}$$

 $\overline{GG'} = 9 \times \frac{2}{3} = 6(\text{ cm})$

3

- 26. 다음 그림과 같은 평행사변형 ABCD 에서 점M 은 BC 의 중점이다. DP = 6 일 때, DM 의 길이를 구하면?
 - ① 3 ② 6



평행사변형의 두 대각선은 서로 다른 것을 이등분하므로 $\overline{\mathrm{AO}}$ =

 $\overline{\text{CO}}, \overline{\text{BO}} = \overline{\text{DO}}$ ΔDBC 에서 $\overline{\text{CO}}, \overline{\text{DM}}$ 은 중선이므로 점 P 는 무게중심이다. $\therefore \overline{\text{DP}}: \overline{\text{PM}} = 2:1$,

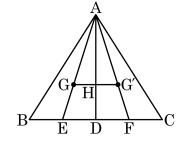
 $\overline{DP} : \overline{PM} = 6 : 3 = 2 : 1 ,$

그러므로 $\overline{\mathrm{DM}} = 9$

27. 다음 그림에서 $\triangle ABC$ 는 $\overline{AB}=\overline{AC}$ 인 이등변삼각형이다. 점 D는 \overline{BC} 의 중점이고, 두 점 G, G'은 각각 $\triangle ABD$, $\triangle ACD$ 의 무게 중심이다. $\overline{BC}=21~\mathrm{cm}$ 일 때, $\overline{GG'}$ 의 길이를 구하면?

BO = 21cm e / ||, dd - || e || e | f | e ||.

① $5\,\mathrm{cm}$ ② $6\,\mathrm{cm}$



 $37 \, \mathrm{cm}$

4 8 cm

⑤ 9 cm

 $21 \times \frac{2}{3} \times \frac{1}{2} = 7 \text{ (cm)}$