방정식
$$(x-1)(x^2-x-2)=0$$
의 모든 근의 합을 구하면?
① 5 ② 4 ③ 3 ④ ② 5 1

해설
$$(x-1)(x-2)(x+1) = 0$$

$$\therefore x = -1, 1, 2$$

$$\therefore -1 + 1 + 2 = 2$$

- **2.** 사차방정식 $x^4 11x^2 + 30 = 0$ 의 네 근 중 가장 작은 근을 a, 가장 큰 근을 b라 할 때, $a^2 + b^2$ 의 값은?
 - ① 8 ② 9 ③ 10 ④ 11 ⑤ 12

$$x^{4} - 11x^{2} + 30 = 0$$

$$(x^{2} - 5)(x^{2} - 6) = 0$$

$$\therefore x = \pm \sqrt{5}, \ x = \pm \sqrt{6}$$
가장 작은 근 $a = -\sqrt{6}$, 가장 큰 근 $b = \sqrt{6}$

$$a^{2} + b^{2} = 6 + 6 = 12$$

3. x에 대한 삼차방정식 $x^3 + 3x^2 - kx - 5 = 0$ 의 한 근이 -1일 때, 상수 k의 값은?

①
$$-5$$
 ② -3 ③ -1 ④ 1 ⑤ 3

해설
$$x^3 + 3x^2 - kx - 5 = 0$$
의 한 근이 -1 이므로 $x = -1$ 을 대입하면
$$(-1)^3 + 3(-1)^2 - k(-1) - 5 = 0$$

4. 삼차방정식 $2x^3 - 7x^2 + 11x + 13 = 0$ 의 세 근을 α , β , γ 라고 할 때, 다음 γ , γ , γ , γ (대) 알맞은 값을 차례로 쓴 것은?

(7!)
$$\alpha+\beta+\gamma$$

(L-!) $\alpha\beta+\beta\gamma+\gamma\alpha$
(C-!) $\alpha\beta\gamma$

해설 삼차방정식
$$ax^3 + bx^2 + cx + d = 0 (a \neq 0)$$
 의 세 근을 α , β , γ 라 하면
$$\alpha + \beta + \gamma = -\frac{b}{a}$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$$

$$\alpha\beta\gamma = -\frac{d}{a}$$

5. 다음 중 1+i가 하나의 근이며 중근을 갖는 사차방정식은?

②
$$(x^2 - 2x + 2)(x - 1)(x + 1)$$

$$(x^2 - 1)(x^2 - 2x - 1)$$

$$(x^2+1)(x-1)(x+1)$$

$$(x^2+1)(x^2-2x+1)$$

다른 한 근은 1 – *i* 이다.

다른 한 근은
$$1 - i$$
이다.

$$\therefore \{x - (1 + i)\} \{x - (1 - i)\} = 0$$

 $\Rightarrow x^2 - 2x + 2 = 0$ 주어진 조건에 맞는 방정식:

$$(x^2 - 2x + 2)(x - \alpha)^2 = 0$$

∴ ①이 조건에 맞다

6. 삼차방정식 $x^3 - 5x^2 + ax + b = 0$ 의 한 근이 $1 + \sqrt{2}$ 일 때, 다른 두 근을 구하면? (단, *a*, *b* 는 유리수)

①
$$1 - \sqrt{2}$$
, 2 ② $-1 + \sqrt{2}$, -3 ③ $1 - \sqrt{2}$, 3

(4) $1 - \sqrt{2} \cdot -3$ (5) $-1 + \sqrt{2} \cdot 3$

삼차방정식의 근과 계수와의 관계에 의해 세근의 합은 5이므로 $\therefore 1 + \sqrt{2} + (1 - \sqrt{2}) + \alpha = 5, \ \alpha = 3$ ∴ 다른 두 근은 3.1 - √2

7.
$$x^3-1=0$$
의 한 허근을 ω 라 할 때, $\omega^3+\overline{\omega}^3$ 의 값을 구하면? (단, $\overline{\omega}$ 는 ω 의 켤레복소수이다.)

해설
$$x^3 - 1 = (x - 1)(x^2 + x + 1) = 0$$

$$x = 1 또는 x = \frac{-1 \pm \sqrt{3}i}{2}$$

$$\frac{-1 + \sqrt{3}i}{2} \stackrel{=}{=} \omega 라 하면$$

$$\overline{\omega} = \frac{-1 - \sqrt{3}i}{2}$$

$$\therefore \omega^3 = 1, \overline{\omega}^3 = 1, \omega^3 + \overline{\omega}^3 = 2$$

- 8. 방정식 $(x^2 + x)^2 + 2(x^2 + x + 1) 10 = 0$ 의 모든 실근의 합은?
 - ① -10 ② -2
- 3

4

⑤ 10

해설

$$(x^2 + x)^2 + 2(x^2 + x + 1) - 10 = 0$$
 에서
 $x^2 + x = A$ 라하면

$$A^{2} + 2A - 8 = 0,$$

$$(A + 4)(A - 2) = 0$$

∴
$$A = -4$$
 또는 $A = 2$
(i) $x^2 + x = -4$ 일 때,
 $x^2 + x + 4 = 0$

$$\therefore x = \frac{-1 \pm \sqrt{15}i}{2}$$

(ii)
$$x^2 + x = 2$$
 일 때,
 $x^2 + x - 2 = 0$,

$$(x+2)(x-1) = 0$$

$$\therefore x = -2$$
 또는 $x = 1$

(i), (ii)에서 실근은
$$x=-2$$
 또는 $x=1$ 이므로 실근의 합은 $-2+1=-1$

9. 방정식 $2x^4 - x^3 - 6x^2 - x + 2 = 0$ 을 풀면?

①
$$x = -1 \left(\frac{2}{5} \frac{1}{1} \right), -\frac{1}{2}, 2$$

 $(x+1)^2(x-2)(2x-1) = 0$

 $x = -1, \frac{1}{2}, 2$

②
$$x = -1$$
 (중국), $\frac{1}{2}$, 1
④ $x = -1$, $\frac{1}{2}$, 2 (중국)

(5)
$$x = -1, \frac{1}{2} \left(\frac{2}{5} \right), 2$$

③x = -1 (중구), $\frac{1}{2}$, 2

10. 삼차방정식 $x^3 + 27 = 0$ 의 모든 근의 합은?

② 1 ③ 2

(4) 3 (5) 4

$$x^3 + 3^3 = 0$$
, $(x+3)(x^2 - 3x + 9) = 0$

$$\therefore x = -3, \frac{3 \pm 3\sqrt{3}i}{2}$$

항:
$$-3 + \frac{3 + 3\sqrt{3}i}{2} + \frac{3 - 3\sqrt{3}i}{2} = 0$$

 $x^{3} + 27 = 0$ 에서 x^{2} 의 계수가 0이므로 근과 계수와의 관계에 의해 세 근의 합은 0

11. 다음 방정식의 모든 해의 합을 구하여라.

 $x^4 = 16$

▷ 정답: 0

 $x^4 - 16 = 0$ 에서

 $(x^2 - 4)(x^2 + 4) = 0$ $(x - 2)(x + 2)(x^2 + 4) = 0$

 $\therefore x = \pm 2 \,\, \text{\Psi} \, x = \pm 2i$

 \therefore 모든 해의 합은 (-2) + 2 + (-2i) + 2i = 0

12. 방정식
$$x^6 - 1 = 0$$
의 해가 아닌 것은?

①
$$-1$$
 ② 1 ③ $\frac{-1 + \sqrt{3}i}{2}$ ④ $\frac{-1 + \sqrt{3}i}{2}$

$$x^{6}-1 = (x^{3}+1)(x^{3}-1) = (x+1)(x^{2}-x+1)(x-1)(x^{2}+x+1) = 0$$

$$\Rightarrow x = -1, 1, \frac{1 \pm \sqrt{3}i}{2}, \frac{-1 \pm \sqrt{3}i}{2}$$

$$(x^2+x+1)=0$$

13. 삼차방정식 $x^3 + x - 2 = 0$ 의 해를 구하면?

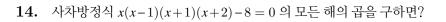
① 1,
$$\frac{-1 \pm \sqrt{7}i}{2}$$
 ② -1, $\frac{-1 \pm \sqrt{7}i}{2}$ ③ -1, $\frac{-1 \pm \sqrt{7}}{2}$

$$\begin{array}{c|cccc} 1 & 1 & 0 & 1 & -2 \\ & 1 & 1 & 2 \\ \hline & 1 & 1 & 2 \\ \hline & 1 & 1 & 2 \\ \hline & 0 \\ \end{array}$$

$$\Rightarrow & (x-1)(x^2+x+2)=0$$

$$x^2+x+2=0 \ \mbox{$\stackrel{\circ}{\to}$} \ \$$

조립제법을 이용하면



(1) -8

2 -2

3 1

4

⑤ 8

해설

$$x(x-1)(x+1)(x+2) - 8 = 0$$

$$\{x(x+1)\}\{(x-1)(x+2)\} - 8 = 0$$

$$(x^2 + x)(x^2 + x - 2) - 8 = 0$$

 $x^2 + x = t$ 라 하면, $t(t-2) - 8 = 0$

$$\therefore t^2 - 2t - 8 = x^4 + 2x^3 - x^2 - 2x - 8 = 0$$

근과 계수와의 관계에 의해서, 근을 α , β , γ , δ 라 하면 \therefore 모든 해의 α 은 α .

해설

근과 계수의 관계에서 모든 해의 곱을 나타내는 것은 다항식을 전개했을 때의 상수항이므로 -8 (단, 다항식의 최고차항의 차 수가 홀수일 때는 상수항의 부호를 반대로 바꾼것이 모든 해의 곱이다.) 15. 다음 삼차방정식을 풀었을 때 두 허근의 합을 구하여라.

$$x^3 - x^2 + x - 6 = 0$$

- ▶ 답:
- ▷ 정답: -1

해설

$$f(x) = x^3 - x^2 + x - 6$$
으로 놓으면 $f(2) = 8 - 4 + 2 - 6 = 0$
이므로 $f(x)$ 는 $x - 2$ 를 인수로 갖는다.

위의 조립제법에서
$$f(x)=(x-2)(x^2+x+3)$$
 이므로 주어진
방정식은 $(x-2)(x^2+x+3)=0$
 $\therefore x=2$, $x=\frac{-1\pm\sqrt{11}i}{2}$

16. 다음 방정식의 모든 근의 합을 구하여라.

$$x^3 - 13x + 12 = 0$$

▷ 정답: 0

해설

1 1 0 -13 12
1 1 1 -12
1 1 -12 0

$$f(x) = x^3 - 13x + 12$$
라고 하면 $f(1) = 0$ 이므로

 $(x-1)(x^2+x-12)=0$

(x-1)(x+4)(x-3) = 0 $\therefore x = -4 \, \stackrel{\leftarrow}{\Xi} x = 1 \, \stackrel{\leftarrow}{\Xi} x = 3$

 $\therefore -4+1+3=0$

17. 다음 삼차방정식의 정수해를 구하여라.

$$x^3 - 1 = 0$$

$$x^3 - 1 = 0$$
 에서 $(x - 1)(x^2 + x + 1) = 0$

$$\therefore x = 1 또는 x = \frac{-1 \pm \sqrt{3}i}{2}$$

18. 사차방정식 $x^4 + x^3 - x^2 - 7x - 6 = 0$ 의 두 허근을 α, β 라 할 때, $\alpha + \beta$ 의 값을 구하면?

$$\bigcirc -2$$
 $\bigcirc -1$ $\bigcirc 3$ $\bigcirc 0$ $\bigcirc 4$ $\bigcirc 1$ $\bigcirc 5$ $\bigcirc 2$

19. 삼차방정식 $x^3 - 8x^2 + 17x - 10 = 0$ 의 세 근을 α , β , γ 라 할 때, $\alpha - \beta - \gamma$ 의 값은?(단, $\alpha < \beta < \gamma$)

①
$$-3$$
 ② -4 ③ -5 ④ -6 ⑤ -7

$$x^3 - 8x^2 + 17x - 10 = 0$$
 인수분해하여 해를 구하면 $(x-1)(x-2)(x-5) = 0$
 $\therefore \alpha = 1, \beta = 2, \gamma = 5$
 $\therefore \alpha - \beta - \gamma = 1 - 2 - 5 = -6$

20. $x^3 - 2x^2 - 5x + 6 = 0$ 의 해를 구하여라.

답:

▶ 답:

▶ 답:

 \triangleright 정답: x=1

 \triangleright 정답: x=-2

➢ 정답: x = 3

 $f(x) = x^3 - 2x^2 - 5x + 6$ 으로 놓으면

 $x^3 - 2x^2 - 5x + 6 = (x - 1)(x^2 - x - 6)$

21. 삼차방정식
$$x^3 - 6x^2 - 7x - 5 = 0$$
의 세 근을 α, β, γ 라 할 때, $(1 - \alpha)(1 - \beta)(1 - \gamma)$ 의 값은?

$$(1-\alpha)(1-\beta)(1-\gamma) = 1 - (\alpha+\beta+\gamma) + (\alpha\beta+\beta\gamma+\gamma\alpha) - \alpha\beta\gamma$$
 근과 계수와의 관계에 의해 $\alpha+\beta+\gamma=6, \ \alpha\beta+\beta\gamma+\gamma\alpha=-7, \ \alpha\beta\gamma=5$ $\therefore \ (1-\alpha)(1-\beta)(1-\gamma) = 1-6-7-5=-17$

$$f(x) = x^3 - 6x^2 - 7x - 5 = (x - \alpha)(x - \beta)(x - \gamma) = 0$$
이므로

$$f(1) = (1 - \alpha)(1 - \beta)(1 - \gamma) = 1 - 6 - 7 - 5 = -17$$

22. a, b가 유리수일 때, $x = 1 + \sqrt{2}$ 가 $x^3 - 3x^2 + ax + b = 0$ 의 근이 된다.이 때, $a^2 + b^2$ 의 값을 구하여라.

유리계수 방정식이므로
$$1+\sqrt{2}$$
가 근이면 $1-\sqrt{2}$ 도 근이다.
주어진 방정식의 세 근을 $1+\sqrt{2}$, $1-\sqrt{2}$, α 라 하면 $(1+\sqrt{2})+(1-\sqrt{2})+\alpha=3$ ·······⑤ $(1+\sqrt{2})(1-\sqrt{2})+\alpha(1+\sqrt{2})+\alpha(1-\sqrt{2})=a$ ······⑥ $\alpha(1+\sqrt{2})(1-\sqrt{2})=-b$ ·····⑥

 \bigcirc , \bigcirc , \bigcirc 을 연립하여 풀면 a=1, b=1

23. 다음을 읽고 물음에 답하여라.

삼차방정식 $x^3+ax^2+bx+c=0$ (a,b,c는 실수)에서 $f(x)=x^3+ax^2+bx+c$ 라 두고 x=1+2i를 대입하면 $f(1+2i)=(1+2i)^3+a(1+2i)^2+b(1+2i)+c=0$ 이 된다. 이것을 전개하여 정리하면 (-11-3a+b+c)+(-2+4a+2b)i=0 a,b,c가 실수이므로 이제 x=1-2i를 대입하면 $f(1-2i)=(1-2i)^3+a(1-2i)^2+b(1-2i)+c=(-11-3a+b+c)-(-2+4a+2b)i=0$ 따라서 ((가))

(가)에 들어갈 말로 가장 알맞는 것을 고르면?

- ① 삼차방정식 $x^3 + ax^2 + bx + c = 0$ $(a, b, c \vdash 2)$ 의 한 근이 1 + 2i 이면, 1 2i 도 근임을 알 수 있다.
- ② 삼차방정식 $x^3 + ax^2 + bx + c = 0$ (a, b, c 는 실수)의 한 근이 1 2i 이면, 1 + 2i 도 근임을 알 수 있다.
- ③ 삼차방정식 $x^3 + ax^2 + bx + c = 0$ (a, b, c 는 실수)의 한 근이 1 + 2i 라고 해서, 반드시1 2i 가 근이 되는 것은 아니다.
- ④ 삼차방정식 $x^3 + ax^2 + bx + c = 0$ (a, b, c 는 실수)의 한 근이 1 2i 라고 해서, 반드시1 + 2i 가 근이 되는 것은 아니다.
- ⑤ 삼차방정식 $x^3 + ax^2 + bx + c = 0$ (a, b, c 는 실수)은 반드시하나의 실근을 가진다.

해설

x = 1 + 2i 를 대입한 결과와 x = 1 - 2i를 대입한 결과가 같다.

24. 실계수 삼차방정식 $x^3 + ax^2 + bx + 2 = 0$ 의 한 근이 1 + i 일 때, a + b 의 값은?

①
$$-3$$
 ② -2 ③ -1 ④ 1 ⑤ 3

세 근을
$$1+i, 1-i, \gamma$$
 라 하면 $(1+i)(1-i)\gamma = -2, \ 2\gamma = -2$ $\therefore \ \gamma = -1$ $(1+i)+(1-i)+\gamma = -a = 1$ $\therefore \ a = -1$

a + b = -1

 $(1+i)(1-i) + (1-i)\gamma + \gamma(1+i) = 0, b=0$

25. 삼차방정식
$$x^3+2x^2+3x+4=0$$
의 세 근을 α , β , γ 라 할 때,
$$\frac{\beta+\gamma}{\alpha}+\frac{\gamma+\alpha}{\beta}+\frac{\alpha+\beta}{\gamma}$$
의 값을 구하면?

①
$$-\frac{1}{2}$$
 ② $-\frac{3}{4}$ ③ -1 ④ $-\frac{3}{2}$ ⑤ -2

해설
삼차 방정식의 근과 계수의 관계에서
$$\alpha + \beta + \gamma = -2$$
, $\alpha\beta + \beta\gamma + \gamma\alpha = 3$, $\alpha\beta\gamma = -4$
 $\beta + \gamma = -2 - \alpha$, $\gamma + \alpha = -2 - \beta$, $\alpha + \beta = -2 - \gamma$ 를 이용하면
(주어진 식)= $\frac{-2 - \alpha}{\alpha} + \frac{-2 - \beta}{\beta} + \frac{-2 - \gamma}{\gamma}$
= $-2\left(\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}\right) - 3$

 $=-2\left(\frac{\beta\gamma+\alpha\gamma+\alpha\beta}{\alpha\beta\gamma}\right)-3=-\frac{3}{2}$