다음 중 다항식 $x^4 - 8x^2 - 9$ 의 인수가 아닌 것은?

①
$$x-3$$
 ② $x+3$ ③ x^2+1

(5)
$$x^3 + 3x^2 + x + 3$$

해설
준 식을 인수분해 하면
$$x^4 - 8x^2 - 9 = (x^2 + 1)(x^2 - 9)$$

 $= (x^2 + 1)(x + 3)(x - 3)$

순 식을 인수분해 하면

$$x^4 - 8x^2 - 9 = (x^2 + 1)(x^2 - 9)$$

$$= (x^2 + 1)(x + 3)(x - 3)$$
⑤ $x^2(x + 3) + x + 3 = (x^2 + 1)(x + 3)$

. 다음 세 다항식에서 최대공약수를 구하면?

$$2x^2 - 3x + 1$$
, $3x^2 - x - 2$, $x^2 + 3x - 4$

 \bigcirc x-1

(4) x + 3

② 2x - 1

(3) x - 2

⑤ x + 1

 $2x^{2} - 3x + 1 = (2x - 1)(x - 1)$ $3x^{2} - x - 2 = (3x + 2)(x - 1)$

 $x^2 + 3x - 4 = (x+4)(x-1)$ 따라서 최대 곳약수는 x-1이다 **3.** 세 개의 다항식 $x^3 + ax + b$, $x^3 + cx^2 + a$, $cx^2 + bx + 4$, 의 공약수 중하나가 x - 1일 때, a + b + c의 값은?

①
$$2$$
 ② -2 ③ 3 ④ -3 ⑤ 4

 $\therefore a+b+c=-3$

- **4.** 복소수 $\frac{3+i}{1+i} + \frac{a-i}{1-i}$ 가 실수가 되도록 하는 실수 a 의 값은?
 - ① 1 ② 2 ③3 ④ 4 ⑤ 5

해설
$$\frac{3+i}{1+i} + \frac{a-i}{1-i} = \frac{(3+i)(1-i) + (1+i)(a-i)}{(1+i)(1-i)}$$

$$= \frac{4-2i + (a+1) + (a-1)i}{2}$$

$$= \frac{a+5+(a-3)i}{2}$$
 위의 식이 실수가 되려면 허수 부분이 0이어야 하므로 $a-3=0$ $\therefore a=3$

5.
$$\frac{1}{i} + \frac{1}{i^2} + \frac{1}{i^3} + \dots + \frac{1}{i^{50}} = \mathbb{R}$$

①
$$-1+i$$
 ② $-1-i$ ③ 0
④ $1+i$ ⑤ $1-i$

해설
$$\frac{1}{i} + \frac{1}{i^2} + \frac{1}{i^3} + \dots + \frac{1}{i^{50}}$$

$$\left(\frac{1}{i} + \frac{1}{i^2} + \frac{1}{i^3} + \frac{1}{i^4}\right) + \left(\frac{1}{i^5} + \frac{1}{i^6} + \frac{1}{i^7} + \frac{1}{i^8}\right) + \dots$$

$$\left(\frac{1}{i} + \frac{1}{i^2} + \frac{1}{i^3} + \frac{1}{i^4}\right) + \left(\frac{1}{i^5} + \frac{1}{i^6} + \frac{1}{i^7} + \frac{1}{i^8}\right) + \cdots$$

$$+ \left(\frac{1}{i^{45}} + \frac{1}{i^{46}} + \frac{1}{i^{47}} + \frac{1}{i^{48}}\right) + \frac{1}{i^{49}} + \frac{1}{i^{50}}$$

$$= \left(\frac{1}{i} - 1 - \frac{1}{i} + 1\right) + \left(\frac{1}{i} - 1 - \frac{1}{i} + 1\right) + \cdots$$

$$+ \left(\frac{1}{i} - 1 - \frac{1}{i} + 1\right) + \frac{1}{i} - 1$$

$$= \frac{1}{i} - 1 = -i - 1$$

6.
$$x = 1 + \sqrt{2}i, y = 1 - \sqrt{2}i$$
 일 때, $x^2 + y^2$ 의 값을 구하면?

①
$$-1$$
 ② 1 ③ -2 ④ 2

$$x^{2} = (1 + \sqrt{2}i)^{2} = 1 + 2\sqrt{2}i - 2 = -1 + 2\sqrt{2}i$$

$$y^{2} = (1 - \sqrt{2}i)^{2} = 1 - 2\sqrt{2}i - 2 = -1 - 2\sqrt{2}i$$

$$\therefore x^{2} + y^{2} = -2$$

$$x^{2} + y^{2} = (x + y)^{2} - 2xy = 2^{2} - 2 \times 3 = -2$$

7. 복소수 z 와 그의 켤레복소수 z 에 대하여 등식 (1 – 2i)z – iz = 3 – 5i 를 만족하는 z 는?

①
$$1+i$$
 ② $2+i$ ③ $2+2i$ ④ $1-i$ ⑤ $2-i$

$$z = a + bi$$
 라 하면 $\bar{z} = a - bi$ 이므로 $(1 - 2i)(a + bi) - i(a - bi) = a + bi - 2ai + 2b - ai - b$ $= (a + b) + (-3a + b)i = 3 - 5i$ 따라서 $a + b = 3$, $-3a + b = -5$ 이므로 연립하여 풀면 $a = 2$, $b = 1$ 따라서 $z = 2 + i$ 이다

- 8. 11·13³ + 33·13² + 33·13 + 11의 인수가 <u>아닌</u> 것을 고르면?
 - ①3 ② 7 ③ 11 ④ 14 ⑤ 22

11 = a, 13 = b 라 하면
$$a \cdot b^3 + 3ab^2 + 3ab + a$$

$$= a(b^3 + 3b^2 + 3b + 1)$$

$$= a(b+1)^3 = 11 \cdot 14^3$$

$$= 11 \times 2^3 \times 7^3$$

9. 최고차항의 계수가 1인 두 다항식 f(x), g(x)의 곱이 $x^3 + x^2 - 5x + 3$ 이고, 최소공배수가 $x^2 + 2x - 3$ 일 때, f(2) + g(2)의 값을 구하면?

①
$$3$$
 ② 4 ③ 5 ④ 6 ⑤ 7

10. 다음 중 옳지 <u>않은</u> 것은?

- $i^2 = -1$
- $x^2 = -4$ 를 만족하는 실수는 존재하지 않는다.
- $\sqrt{-9} = 3i$
- ④2는 복소수이다.
- a + bi 에서 b = 0 이면 실수이다. (단, a, b 는 실수)

해설

 $2 = 2 + 0 \cdot i$ 이므로 복소수이다.

11. 실수
$$x$$
 에 대하여 $|x-2|^2-|3-x|^2-\sqrt{-9}+\sqrt{-16}$ 을 $a+bi$ 꼴로 나타낼 때 $a+b$ 의 값을 구하면?

(3) 2x

$$4 \ 2x - 5$$
 $5 \ 0$

② 2x - 4

 $\bigcirc -5$

(₹4) =
$$(x-2)^2 - (3-x)^2 - 3i + 4i$$

= $2x - 5 + i$
∴ $a = 2x - 5$, $b = 1$
∴ $a + b = 2x - 4$

12. x에 대한 일차방정식 $(a^2+3)x+1=a(4x+1)$ 의 해가 무수히 많을 때, a의 값은?

① 0 ② 1 ③ 2 ④ 3 ⑤ 4

해설
$$(a^2 + 3 - 4a)x = a - 1$$
 모든 x 에 대해 성립하려면
$$a^2 - 4a + 3 = 0, a - 1 = 0$$

공통근: a = 1

13. 방정식
$$|x+5| = 1$$
를 만족하는 x 의 값들의 합은?

$$|x+5| = 1$$
⇒ $x+5=1$ 또는 $x+5=-1$
∴ $x=-4$ 또는 $x=-6$