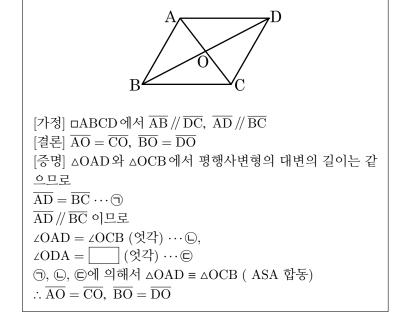
1. 다음은 '평행사변형에서 두 대각선은 서로 다른 것을 이등분한다.' 를 증명한 것이다. □ 안에 들어갈 알맞은 것은?



④∠OBC

① ∠ODA

⑤ ∠BCO

② ∠OAB ③ ∠CDO

해설

 $\Delta {
m OAD}$ 와 $\Delta {
m OCB}$ 에서 평행사변형의 대변의 길이는 같으므로 $\overline{
m AD}=\overline{
m BC},\,\overline{
m AD}$ # $\overline{
m BC}$ 이고

∠OAD = ∠OCB (엇각), ∠ODA = ∠OBC (엇각)이므로 △OAD ≡ △OCB (ASA 합동)이다.

2. 다음은 평행사변형 ABCD 의 각 변의 중점을 E, F, G, H 라 할 때, □EFGH 는 □ 기 임을 증명하는 과정이다. ¬~□에 들어갈 것으로 옳지 <u>않은</u> 것은?

∴ EF= ⊏ △AEH ≡ △CGF (□ 합동) $\therefore \boxed{\quad \Box \quad} = \overline{EH}$ 따라서 □EFGH 는 ㄱ 이다.

③ □: GH

① ㄱ: 평행사변형

② ∟: ASA ④ =: SAS

 \bigcirc \Box : $\overline{\mathrm{GF}}$

해설

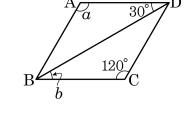
 $\Delta \mathrm{EBF} \equiv \Delta \mathrm{GDH}$ ($\mathrm{SAS}\, \mathrm{합동})$

 $\therefore \ \overline{\mathrm{EF}}{=}\overline{\mathrm{GH}}$ △AEH ≡ △CGF (SAS 합동)

 $\therefore \overline{\mathrm{GF}} = \overline{\mathrm{EH}}$ 평행사변형은 두 쌍의 대변의 길이가 각각 같다.

따라서 □EFGH 는 평행사변형이다.

3. 다음 그림과 같은 □ABCD가 평행사변형이 되도록 $\angle a$ 와 $\angle b$ 의 크기를 정할 때, 두 각의 합을 구하여라.



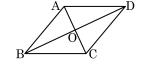
▷ 정답: 150<u>°</u>

▶ 답:

두 쌍의 대각의 크기가 각각 같은 사각형은 평행사변형이다.

따라서 $\angle a=120$ °, $\overline{\rm AD}$ $//\overline{\rm BC}$ 이고, $\angle \rm ADB$ 와 $\angle \rm CDA$ 는 엇각이 므로 $\angle b=30$ ° 이다. \therefore $\angle a+\angle b=150$ °

4. 다음 중 사각형 ABCD 가 평행사변형이 되 기 위한 조건을 모두 고르면? (정답 3개)



① $\overline{AB} = \overline{AD}$, $\overline{BC} = \overline{CD}$

 \bigcirc $\overline{AB} /\!/ \overline{DC}, \overline{AD} /\!/ \overline{BC}$

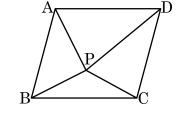
 $\bigcirc \overline{OA} = \overline{OC}, \ \overline{OB} = \overline{OD}$ $\label{eq:add_add_add} \boxed{\widehat{\mathrm{A}}\mathrm{B}} = \overline{\mathrm{D}}\overline{\mathrm{C}}, \ \overline{\mathrm{A}}\overline{\mathrm{D}} = \overline{\mathrm{B}}\overline{\mathrm{C}}$

4 $\angle A = \angle B$, $\angle C = \angle D$

평행사변형이 되기 위한 조건 (1) 두 쌍의 대변이 각각 평행하다.

- (2) 두 쌍의 대변의 길이가 각각 같다.
- (3) 두 쌍의 대각의 크기가 각각 같다. (4) 두 대각선이 서로 다른 것을 이등분한다.
- (5) 한 쌍의 대변이 평행하고 그 길이가 같다.

다음과 같은 평행사변형 ABCD의 내부에 임의의 한 점 P를 잡았다 **5.** 고 한다. ΔPAD = $40 {
m cm}^2$, ΔPBC = $25 {
m cm}^2$ 라고 할 때, 평행사변형 ABCD의 넓이= ()cm 2 를 구하여라.



 $\underline{\rm cm^2}$

▷ 정답: 130cm²

답:

내부의 한 점 P에 대하여 $\frac{1}{2}$ \square ABCD = \triangle PAB + \triangle PCD = $\Delta PAD + \Delta PBC$ 이다. $\Delta PAD = 40 cm^2, \ \Delta PBC = 25 cm^2$ 이므로

 $40 + 25 = \frac{1}{2}$ \square ABCD 이다.

따라서 평행사변형 ABCD의 넓이는 $65 \times 2 = 130 (\mathrm{cm}^2)$ 이다.

6. 다음 보기 중에서 두 대각선의 길이가 같은 사각형은 모두 몇 개인가?

보기
① 등변사다리꼴
② 직사각형
② 2개
③ 3개
④ 4개
⑤ 5개

두 대각선의 길이가 같은 사각형은 직사각형, 정사각형, 등변사

다리꼴이다. 따라서 ①, ©, @ 3 개이다. ______

- 7. 다음 중 항상 닮은 도형인 것을 모두 골라라.
 - ① 밑변의 길이가 같은 두 이등변삼각형 ② 반지름의 길이가 다른 두 반원
 - ⓒ 두 정삼각형
 - © 1 0 H 1 0
 - ② 중심각의 크기가 같은 두 부채꼴③ 두 평행사변형

▶ 답:

▶ 답:

▶ 답:

 ▷ 정답 : □

▷ 정답: □

▷ 정답: ②

해설

© 반원은 확대, 축소하면 중심각은 일정하고 반지름과 호의 길이가 일정하게 변하므로 항상 닮은 도형이다.

ⓒ 정삼각형은 세 각이 일정하고 세 변의 길이가 일정하게 변하므로 항상 닮은 도형이다.◉ 중심각의 크기가 같은 부채꼴은 반지름과 호의 길이만 일정

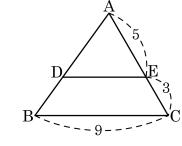
하게 변하므로 항상 닮은 도형이다.

- 8. 다음 도형 중 항상 닮은 도형인 것은?
 - ① 두 직육면체
- ② 두 이등변삼각형
- ③ 두 정삼각형
- ④ 두 원뿔
- ⑤ 두 마름모

평면도형에서 항상 닮음이 되는 도형은 모든 원, 중심각의 크기가

같은 부채꼴, 모든 직각이등변삼각형, 모든 정다각형이다. 입체도형에서 항상 닮음이 되는 도형은 모든 구와 모든 정다면 체이다.

다음 그림과 같이 ΔABC 에서 $\overline{
m DE} \, / \! / \, \overline{
m BC}$ 일 때, 다음 중 옳지 $\underline{
m ce}$ 9. 것은?



- ② \overline{AD} : $\overline{BD} = 5$: 3
- \bigcirc \overline{BC} : $\overline{DE} = 8$: 3

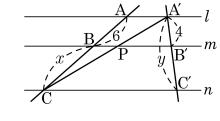
① $\triangle ABC \hookrightarrow \triangle ADE$

 $\triangle ABC$ \hookrightarrow $\triangle ADE$ 이므로 $\overline{AD}:\overline{AB}=\overline{DE}:\overline{BC}=5:8$

해설

따라서 \overline{BC} : $\overline{DE} = 8$: 5 이다.

10. 다음 그림에서 $l /\!\!/ m /\!\!/ n$ 이고, $\overline{\mathrm{A'P}} : \overline{\mathrm{PC}} = 2 : 3$ 일 때, x + y 의 값은?



① 11 ② 13

③ 15

4 17

⑤19

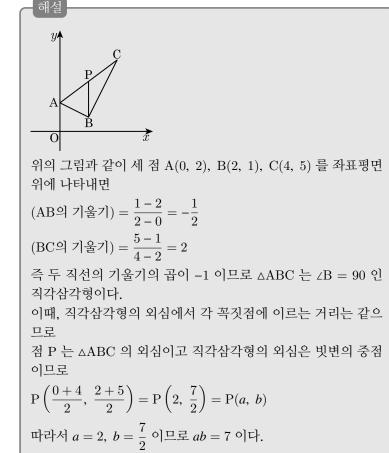
 $2:3=6:x, \ x=9$

2:5=4:y, y=10 $\therefore x + y = 19$

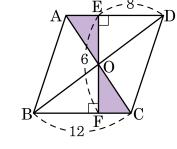
11. 좌표평면 위의 세 점 A(0, 2), B(2, 1), C(4, 5) 에 대하여 삼각형 ABC 의 내부에 있는 점 중 A, B, C 까지의 거리가 모두 같은 점을 P(a, b) 라 할 때, ab 의 값을 구하여라.

답:

▷ 정답: 7



12. 다음 평행사변형 ABCD에서 높이가 6이고 $\overline{\rm ED}=8$, $\overline{\rm BC}=12$ 일 때, 색칠한 부분의 넓이를 구하여라.



 ► 답:

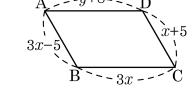
 ▷ 정답:
 12

 $\triangle OAE \equiv \triangle OCF$ 이고 높이가 6이므로 색칠한 부분의 높이는 3

또한, $\overline{AE} = \overline{FC} = 4$ 이므로 $\triangle OAE$ 의 넓이는 $\frac{1}{2} \times 4 \times 3 = 6$ 이고,

색칠한 부분의 넓이는 6+6=12이다.

13. 다음 그림과 같은 $\square ABCD$ 가 평행사변형이 되도록 하는 x, y의 값을 구하여라.



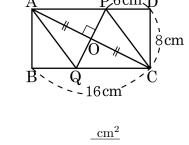
▶ 답:

▶ 답: ➢ 정답: x = 5

➢ 정답: y = 7

3x - 5 = x + 5에서 x = 5y + 8 = 3x = 15에서 y = 7

14. 다음 그림과 같은 직사각형 ABCD 에서 \overline{PQ} 는 대각선 AC 의 수직이 등분선이다. \Box AQCP 의 넓이를 구하여라.



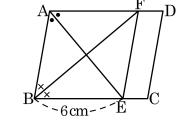
▷ 정답: 80 cm²

답:

□AQCP 는 마름모이므로 $\triangle ABQ \equiv \triangle CDP \text{ (RHS)}$ $\Box AQCP = \Box ABCD - 2\triangle ABQ$

 $= 16 \times 8 - 2 \times \frac{1}{2} \times 6 \times 8$ $= 128 - 48 = 80 \text{ (cm}^2\text{)}$

15. 다음 그림과 같은 □ABCD가 평행사변형이고, ∠A, ∠B의 이등분선이 BC, AD와 만나는 점을 각각 E, F라 할 때, □ABEF의 둘레의 길이는?



③24cm

④ 30cm

⑤ 36cm

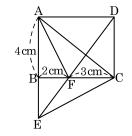
② 18cm

① 12cm

따라서 □ABEF의 둘레는 6 × 4 = 24(cm)이다.

대각선이 내각의 이등분선이 되는 사각형은 마름모이다.

- 16. 다음 그림에서 직사각형 ABCD 에서 점 $\rm E \leftarrow$ $\overline{
 m AB}$ 의 연장선 위의 점이고 $\overline{
 m DE}$ 와 $\overline{
 m BC}$ 의 교 점이 F 이다. 이때 ΔFEC 의 넓이는? $3 2 \text{ cm}^2$
 - $\bigcirc 1 \, \mathrm{cm}^2$ $2 1.5 \,\mathrm{cm}^2$ $\boxed{5}4\,\mathrm{cm}^2$
 - $\textcircled{4} \ 3\,\mathrm{cm}^2$

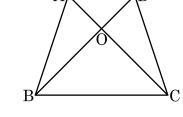


그림에서 $\overline{\mathrm{BD}}$ 를 그으면, $\Delta\mathrm{BFD} = \Delta\mathrm{FEC}$ 이므로

해설

 $\Delta FEC = \frac{1}{2} \times 2 \times 4 = 4 \text{ (cm}^2\text{)}$

17. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD 에서 $\overline{OA}:\overline{OC}=1:2$ 이다. □ABCD 의 넓이가 36 일 때, ΔBCO 의 넓이를 구하여라.

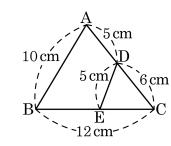


답: ▷ 정답: 16

 $(\triangle AOD$ 의 넓이) = A라 하자.

 $\triangle AOD : \triangle COD = 1 : 2$ 이므로 $A: \triangle COD = 1:2 \quad \therefore \triangle COD = 2A$ 이때 $\triangle ABD = \triangle ACD$ 이므로 $\triangle ABO = \triangle COD = 2A$ 또, △ABO : △BCO = 1 : 2 이므로 $2A : \triangle BCO = 1 : 2 \therefore \triangle BCO = 4A$ $\Box ABCD = A + 2A + 2A + 4A = 36 \quad \therefore A = 4$ 따라서 $\triangle BCO = 4A = 16$ 이다.

18. 다음 그림에서 $\angle ABC = \angle CDE$ 일 때, \overline{CE} 의 길이는?



④ 6.5cm

②5.5cm ⑤ 7cm

3 6cm

① 5cm

△ABC와 △EDC 에서

 $\overline{AB} : \overline{DE} = 10 : 5 = 2 : 1$ $\overline{\mathrm{BC}}:\overline{\mathrm{DC}}=12:6=2:1$

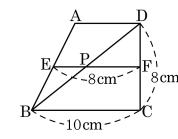
 $\angle \mathbf{B} = \angle \mathbf{D}$

∴ △ABC ∽ △EDC (SAS 닮음)

 $\overline{AC} : \overline{CE} = 2 : 1$ 이므로 $11:\overline{\mathrm{CE}}=2:1$

 $\therefore \overline{CE} = 5.5(cm)$

19. 다음 그림과 같은 사다리꼴 ABCD 에서 $\overline{AD}//\overline{EF}//\overline{BC}$ 이고 점 F 는 \overline{CD} 의 중점이다. $\overline{BC}=10\mathrm{cm},\ \overline{CD}=8\mathrm{cm},\ \overline{EF}=8\mathrm{cm}$ 일 때, ΔBPE 의 넓이는?

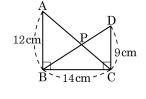


 $\textcircled{4} \ 10 \mathrm{cm}^2$

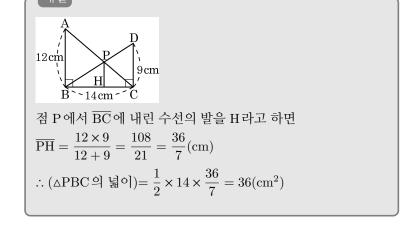
 $\odot 5 \text{cm}^2$ \bigcirc 12cm² 36cm^2

 $\overline{PF}:\overline{BC}=1:2$ 이므로 $\overline{PF}=5$ cm, 따라서 $\overline{EP}=3$ cm, $\overline{FC}=4$ cm, $\therefore \ \Delta \mathrm{BPE} = 3 \times 4 \times \frac{1}{2} = 6 (\mathrm{cm}^2)$

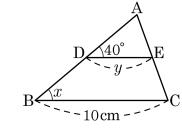
20. 다음 그림에서 $\triangle PBC$ 의 넓이를 구하여라.



► 답: <u>cm²</u>
 ▷ 정답: 36 <u>cm²</u>



21. 다음 그림의 $\triangle ABC$ 에서 점 D, E 가 \overline{AB} 와 \overline{AC} 의 중점일 때, x, y 의 값은?



- ① $\angle x = 30^{\circ}, y = 5 \text{cm}$ ③ $\angle x = 40^{\circ}, y = 7 \text{cm}$
- ② $\angle x = 35^{\circ}, y = 7 \text{cm}$ ④ $\angle x = 40^{\circ}, y = 5 \text{cm}$
- ⑤ $\angle x = 45^{\circ}, \ y = 7 \text{cm}$

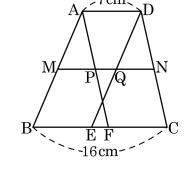
△ADE 와 △ABC 에서

 $\overline{AD} : \overline{AB} = \overline{AE} : \overline{AC} = 1 : 2$

∠A 공통이므로 △ADE ∽ △ABC이다. ∠x = ∠ADE = 40° 이고 점 D, E 는 각 변의 중점이므로 y =

 $\frac{1}{2} \times 10 = 5$

22. 다음 사다리꼴 ABCD에서 점 M, N은 각각 \overline{AB} , \overline{CD} 의 중점이고 $\overline{AB}//\overline{DE}$, $\overline{AF}//\overline{DC}$ 이다. $\overline{AD}=7\mathrm{cm}$, $\overline{BC}=16\mathrm{cm}$ 일 때, \overline{PQ} 의 길이를 바르게 구한 것은?



4 2.5cm

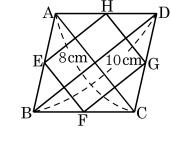
① 1cm

② 1.5cm ③ 3cm ③ 2cm

 $\overline{\text{MN}} = \frac{7+16}{2} = 11.5$

 $\overline{\overline{MQ}} = \overline{\overline{PN}} = \overline{AD} = 7(cm)$ $\overline{\overline{PQ}} = 7 + 7 - 11.5 = 2.5(cm)$

23. 다음 그림과 같은 $\square ABCD$ 는 평행사변형이다. $\overline{AC}=8cm$, $\overline{BD}=10cm$ 이고, \overline{AB} , \overline{BC} , \overline{CD} , \overline{DA} 의 중점을 각각 E, F, G, H 라 할 때, $\square EFGH$ 의 둘레의 길이는?



③ 20cm

④ 22cm

 \bigcirc 24cm

 $\overline{EH} = \overline{FG} = \frac{1}{2}\overline{BD} = \frac{1}{2} \times 10 = 5 \text{ (cm)}$ $\overline{EF} = \overline{HG} = \frac{1}{2}\overline{AC} = \frac{1}{2} \times 8 = 4 \text{ (cm)}$

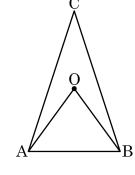
② 18cm

.: (\Box EFGH의 둘레의 길이) = \overline{EF} + \overline{FG} + \overline{GH} + \overline{HE} = 4+5+4+5=18 (cm)

1 | 0 10 (011

① 16cm

 ${f 24.}$ $\triangle ABC$ 의 외심을 O 라 하고 $\angle A+\angle B: \angle C=4:1$ 일 때, $\angle AOB$ 의 크기를 구하여라.



▷ 정답: 72_°

▶ 답:

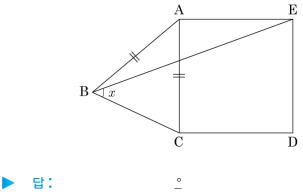
 $\angle \mathsf{OAB} = \angle \mathsf{OBA} = x, \, \angle \mathsf{OBC} = \angle \mathsf{OCB} = y, \, \angle \mathsf{OCA} = \angle \mathsf{OAC} =$ z 라고 하면

 $2x + 2y + 2z = 180^{\circ}, x + y + z = 90^{\circ} \cdots \bigcirc$ 또한, ∠A + ∠B = 4∠C 이므로 $x + z + x + y = 4(y + z) \cdot \cdot \cdot \square$

 \bigcirc , \bigcirc 을 연립하면 x=54° $\triangle AOB$ 는 $\overline{OA} = \overline{OB}$ 인 이등변삼각형이므로

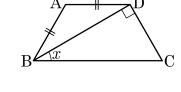
 $\angle AOB = 180^{\circ} - (54^{\circ} \times 2) = 72^{\circ}$

25. 다음 그림에서 □ACDE 는 정사각형이고 \triangle ABC 는 $\overline{AB} = \overline{AC}$ 인 이등변삼각형일 때, $\angle x$ 의 크기를 구하여라.



▷ 정답: 45_°

26. 다음 그림과 같은 사다리꼴 ABCD 에서 $\overline{AB} = \overline{AD} = \overline{CD}$, $\angle BDC = 90$ °일 때, $\angle x$ 의 크기를 구하여라.



▷ 정답: 30_°

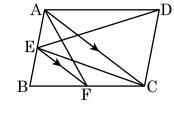
▶ 답:

 $\overline{\mathrm{AD}} /\!/ \overline{\mathrm{BC}}$ 이므로, $\angle \mathrm{ADB} = \angle x \ (\because \ oldsymbol{orange}$

해설

∠ADB = ∠ABD (∵ △ABD가 이등변삼각형) ∴ ∠B = ∠C = 2x △BCD에서 3x = 90° ∴ x = 30°

27. 다음 그림의 평행사변형 ABCD에서 \overline{AC} $/\!/\!/\,\overline{EF}$ 이고 $\triangle AED$ 의 넓이가 $20 \mathrm{cm}^2$ 일 때, $\triangle ACF$ 의 넓이는?

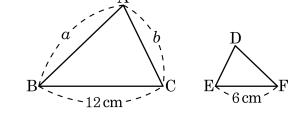


- ① 16cm² ④ 22cm²
- ② 18cm^2 ③ 24cm^2
- 320cm^2
- .

 $\overline{\mathrm{AB}} / / \overline{\mathrm{DC}}$ 이므로 밑변과 높이가 같고, $\Delta \mathrm{AED} = \Delta \mathrm{ACE}$ 이다.

 $\overline{
m AC}$ $/\!/$ $\overline{
m EF}$ 이므로 밑변과 높이가 같고, $\Delta ACF = \Delta ACE$ 이다. $\Delta ACF = 20 ({
m cm}^2)$

28. 다음 그림에서 $\triangle ABC \bigcirc \triangle DFE$ 이다. \overline{DE} 와 \overline{DF} 의 길이를 a, b를 사용한 식으로 나타낸 것은? (단, ∠A = ∠D , ∠B = ∠F)



4 $\overline{\mathrm{DE}}=b(\mathrm{cm}), \ \overline{\mathrm{DF}}=a(\mathrm{cm})$

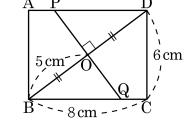
 $\odot \overline{\rm DE} = 2b({\rm cm}), \ \overline{\rm DF} = 2a({\rm cm})$

두 도형의 닮음비는 $\overline{\mathrm{BC}}$: $\overline{\mathrm{FE}} = 12$: 6 = 2 : 1이다.

 $\overline{\mathrm{BC}}:\overline{\mathrm{FE}}=\overline{\mathrm{AC}}:\overline{\mathrm{DE}}$ 이므로 $\overline{\mathrm{DE}}=rac{b}{2}(\mathrm{cm})$ 이다.

 $\overline{\mathrm{BC}}:\overline{\mathrm{FE}}=\overline{\mathrm{AB}}:\overline{\mathrm{DF}}$ 이므로 $\overline{\mathrm{DF}}=rac{a}{2}(\mathrm{cm})$ 이다.

29. 다음 그림의 직사각형 ABCD 에서 $\overline{AB}=6\,\mathrm{cm},\ \overline{BC}=8\,\mathrm{cm},\ \overline{BO}=5\,\mathrm{cm}$ 이다. \overline{PQ} 가 대각선 BD 를 수직이등분할 때, \overline{PQ} 의 길이를 구하면?



- ① $\frac{15}{3}$ cm ② $\frac{25}{3}$ cm ③ $\frac{25}{2}$ cm ③ $\frac{15}{2}$ cm

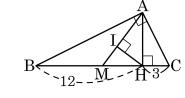
△BCD 와 △BOQ 에서

∠BCD = ∠BOQ (∵ 직각)

∠OBQ 는 공통 ∴ △BCD ♡ △BOQ (AA 닮음) BC : BO = CD : OQ 이므로 8 : 5 = 6 : OQ

 $\overline{OQ} = \frac{15}{4} (\text{cm})$ $\therefore \overline{PQ} = \frac{15}{4} \times 2 = \frac{15}{2} (\text{cm})$

 ${f 30}$. 다음 그림과 같이 $\angle A=90^\circ$ 인 직각삼각형 ABC에서 점 M이 \overline{BC} 의 중점이고, $\overline{AH}_{\perp}\overline{BC}$, $\overline{AM}_{\perp}\overline{HI}$ 일 때, \overline{AI} 의 길이를 구하면?



- ① $\frac{21}{5}$ ② $\frac{22}{5}$ ③ $\frac{23}{5}$ ④ $\frac{24}{5}$ ⑤ 5

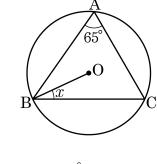
점 M 은 직각삼각형의 외심이므로 $\overline{\mathrm{AM}} = \frac{15}{2}$ $\triangle ABH$ $\hookrightarrow \triangle CAH$ 이므로 $\overline{AH}^2=12\times 3$

 $\triangle AIH$ $\hookrightarrow \triangle AHM$ 이므로 $6^2 = \overline{AI} \cdot \overline{AM}$

 $6^2 = \overline{\rm AI} \times \frac{15}{2}$

 $\therefore \overline{AI} = \frac{24}{5}$

31. 다음 그림에서 원 O가 \triangle ABC에 외접할 때, \angle A = 65°이다. \angle OBC 의 크기를 구하여라.



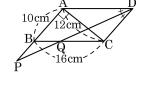
▷ 정답: 25_°

▶ 답:

∠BOC = 130°이고, ΔBOC는 이등변삼각형이므로

 $\angle x = \frac{1}{2}(180^{\circ} - 130^{\circ}) = 25^{\circ}$

32. 다음 그림과 같은 평행사변형 ABCD 에서 ∠D 의 이등분선과 AB 의 연장선과의 교점을 P 라고 할 때, △DQC 의 넓이는?
 ① 35cm²
 ② 37.5cm²



 38cm^2

 40cm^2

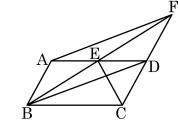
 \bigcirc 60cm²

 n^2

 $\angle {
m ADQ} = {
m DQC}$ (엇각), $\overline{
m QC} = \overline{
m CD} = 10\,{
m cm}$ $\Box {
m ABCD}$ 에서 밑변을 $\overline{
m BC}$ 로 볼 때, 높이를 x라고 하면 $10 \times 12 =$

16x, x = 7.5 (cm) $\therefore \Delta DQC = \frac{1}{2} \times 10 \times 7.5 = 37.5 \text{ (cm}^2)$

 ${f 33.}$ 다음 그림과 같은 평행사변형 ${f ABCD}$ 에서 꼭지점 ${f B}$ 를 지나는 직선 이 $\overline{\mathrm{AD}}$ 와 만나는 점을 E, $\overline{\mathrm{DC}}$ 의 연장선과 만나는 점을 F라고 한다. $\Delta FEC=60\,\mathrm{cm^2},\,\Delta EDF=40\,\mathrm{cm^2}$ 일 때, ΔFEA 의 넓이로 알맞은 것은?



 $40\,\mathrm{cm}^2$

 $20\,\mathrm{cm}^2$ $\odot 50\,\mathrm{cm}^2$

 $30 \, \mathrm{cm}^2$

 $\triangle ADF = \triangle BDF$ 이므로

해설

 $\triangle FEA = \triangle BED = \triangle ECD$ $= \triangle \mathrm{FEC} - \triangle \mathrm{EDF}$ $=60-40=20 \, (\mathrm{cm}^2)$