$1. \qquad \log_9 x = -\frac{3}{2}$ 을 만족하는 x의 값을 구하여라.

답:

ightharpoonup 정답: $rac{1}{27}$

$$\log_9 x = -\frac{3}{2}$$

$$\iff x = 9^{-\frac{3}{2}} = (3^2)^{-\frac{3}{2}} = 3^{-3} = \frac{1}{27}$$

- **2.** $\log_2(x-3)^2$ 값이 존재하기 위한 x의 범위는?
 - ① x < 3 ② $x \ge 3$ ③ $x \ne 3$ ④ $x \ge 4$ ⑤ $x \ne 4$

- 해설 (x-3)² > 0 로부터 x ≠ 3

(4. 3)

3. $\log_3 \sqrt{6} - \frac{1}{2} \log_3 \frac{1}{5} - \frac{3}{2} \log_3 \sqrt[3]{30}$ 을 계산하면?

 $\log_3 \sqrt{6} - \frac{1}{2} \log_3 \frac{1}{5} - \frac{3}{2} \log_3 \sqrt[3]{30}$ $= \frac{1}{2} \log_3 6 + \frac{1}{2} \log_3 5 - \frac{3}{2} \cdot \frac{1}{3} \log_3 30$ $= \frac{1}{2} (\log_3 6 + \log_3 5 - \log_3 30)$ $\therefore \frac{1}{2} (\log_3 30 - \log_3 30) = 0$

4. $\log_2 x = \frac{1}{2}$, $\log_{\frac{1}{2}} y = 2$ 일 때, $\log_x y$ 의 값은?

① -4 ② -1 ③ $\frac{1}{4}$ ④ 1 ⑤ 4

 $\log_{\frac{1}{2}} y = -\log_{2} y = 2$ 이므로 $\log_{x} y = \frac{\log_{2} y}{\log_{2} x} = \frac{-2}{\frac{1}{2}} = -4$

5. $\sqrt[3]{2^a} = 4$, $\log_3 b = 1 - \log_3 \frac{1}{9}$ 일 때, ab의 값을 구하여라.

답:

 ▶ 정답:
 162

 $\sqrt[3]{2^a} = 4 \Leftrightarrow 2^{\frac{a}{3}} = 2^2$ $\Leftrightarrow \frac{a}{3} = 2 \Leftrightarrow a = 6$ $\log_3 b = 1 - \log_3 \frac{1}{9}$ $\Leftrightarrow \log_3 b = \log_3 3 + \log_3 3^2$ $\Leftrightarrow \log_3 b = \log_3 3^3$ $\Leftrightarrow b = 3^3$ $\therefore ab = 6 \times 3^3 = 162$

- **6.** 양수A에 대하여 $\log A = -2.341$ 일 때, 정수 부분과 소수 부분을 바르게 나타낸 것은?
 - ③ 정수 부분: -1, 소수 부분: 0.659
 ② 정수 부분: -2, 소수 부분: 0.341
 - ② 3T TT · -2, 2T TT · 0.34
 - ③ 정수 부분: -2, 소수 부분: 0.659④ 정수 부분: -3, 소수 부분: 0.341
 - ③ 정수 부분 : −3, 소수 부분 : 0.659

-2.341 = -2 - 0.341 = (-2 - 1) + (1 - 0.341)

해설

= -3 + 0.659 따라서 정수 부분은 -3, 소수 부분은 0.659이다.

- 7. $\log_3 10$ 의 소수부분을 α 라 할 때, 3^{α} 의 값은?
 - ① $\frac{1}{3}$ ② $\frac{10}{9}$ ③ $\frac{10}{3}$ ④ $\frac{100}{9}$ ⑤ $\frac{100}{3}$

해설
$$\log_3 10 = 2 + \alpha \ (0 \le \alpha < 1)$$
이므로 $\alpha = \log_3 10 - 2 = \log_3 \frac{10}{9}$ 이 된다. 따라서 $3^\alpha = 3^{\log_3 \frac{10}{9}} = \frac{10}{9}$ 이다.

- 8. $\log_3 2 = a$, $\log_3 5 = b$ 라고 할 때, $\log_8 125$ 를 a, b로 나타내면?
- 2b-a
- (4) 2
- $\Im \frac{a}{b}$

해설

 $\log_3 2 = a \quad \log_3 5 = b$ $\log_8 125 = \log_{2^3} 5^3 = \log_2 5$

 $=\frac{\log_3 5}{\log_3 2}=\frac{b}{a}$

- 9. $5^a = 2, 5^b = 3$ 이라 할 때, $\log_6 72$ 를 a와 b의 식으로 바르게 나타낸 것은?

 - ① $\frac{a+b}{a-b}$ ② $\frac{2a+b}{b-a}$ ② $\frac{3a+2b}{a+b}$

해설

 $a = \log_5 2, \ b = \log_5 3$ $\log_6 72 = \frac{3\log_5 2 + 2\log_5 3}{\log_5 2 + \log_5 3} = \frac{3a + 2b}{a + b}$

10.
$$a, x, y$$
가 양의 실수이고 $A = \log_a \frac{x^2}{y^3}, \ B = \log_a \frac{y^2}{x^3}$ 일 때, $3A + 2B$ 와 같은 것은? (단, $a \neq 1$)

① $\log_a \frac{1}{x^5}$ ② $\log_a \frac{1}{y^5}$ ③ $\log_a \frac{1}{xy}$ ④ $\log_a \frac{x^5}{y^5}$ ⑤ $\log_a \frac{x^5}{y^7}$

3A + 2B $= 3(2\log_a x - 3\log_a y) + 2(2\log_a y - 3\log_a x)$ $= -5\log_a y = \log_a \frac{1}{y^5}$

11. 1이 아닌 양수 p와 세 양수 x, y, z에 대하여 $\log_p x + 2\log_{p^2} y + 3\log_{p^3} z = -3$ 가 성립할 때, xyz의 값은?

① $\frac{1}{p^3}$ ② $\frac{1}{2p}$ ③ $\frac{1}{2}$ ④ 2p ⑤ p^2

이성 $\log_p x + 2\log_{p^2} y + 3\log_{p^3} z$ $= \log_p x + \frac{2}{2}\log_p y + \frac{3}{3}\log_p z$ $= \log_p xyz = -3$ $\therefore xyz = p^{-3} = \frac{1}{p^3}$

12. 함수 f(x)에 대하여 $f(20^x) = \frac{1}{x} - \log_3 5$ 일 때, f(3)의 값은?

 $\boxed{3}2\log_32$

① 1 ② 3 ② $2 \log 35$ ③ $1 + \log_3 2$

 $20^x = 3$ 이라 하면 $x = \log_{20} 3$ $f(3) = \frac{1}{\log_{20} 3} - \log_3 5$ $= \log_3 20 - \log_3 5$ $= \log_3 \frac{20}{5} = \log_3 4 = 2\log_3 2$

a+10b의 값은?

① 3.80

- ② 4.04 ③ 4.28
- 4 4.32
- **(5)** 4.43

 $a = \log 6300 = \log(1000 \times 6.3) = 3 + \log 6.3 = 3.80$

해설

 $\log b = -1.20 = -2 + 0.80 = \log 0.01 + \log 6.3$

 $=\log 0.063$ 이므로 b=0.063

 $\therefore a + 10b = 3.80 + 0.63 = 4.43$

14. $\log(31.4 \times A) = 1.0471$ 일 때, 양수 A의 값을 다음 상용로그표를 이용 하여 구한 것은?

수	0	1	2	3	4	5
3.0	.4771	.4786	.4800	.4814	.4829	.4843
3.1	.4914	.4928	.4942	.4955	.4969	.4983
3.2	.5051	.5065	.5079	.5092	.5105	.5119
3.3	.5185	.5198	.5211	.5224	.5326	.5250
3.4	.5315	.5328	.5340	.5353	.5366	.5378
3.5	.5441	.5435	.5465	.5478	.5490	.5502

4 2.30

① 0.3020

②0.355

⑤ 2.33

③ 1.35

 $\log(31.4\times A)=1.0471$ 에서

해설

 $\log 31.4 + \log A = 1.0471$ $\log A = 1.0471 - \log 31.4$

 $= 1.0471 - (1 + \log 3.14)$

=1.0471 - (1+0.4969)(...로그표에서 $\log 3.14 = 0.4969)$ =-0.4498

=-1+0.5502그런데 주어진 로그표에서 $\log 3.55 = 0.5502$ 이므로 A = 0.355

이다.

15. 다음 <보기>의 상용로그 중 그 소수 부분이 $\log 55$ 의 소수 부분과 같은 것의 개수를 구하면? (단, $\log 550 = 2.7404$)

해설

log 550 의 진수 550과 소숫점의 위치만 다르고 숫자의 배열이

같은 수의 상용로그의 소수 부분은 $\log 550$ 의 소수 부분과 같다. 따라서 <보기> 중 $\log 550$ 과 소수 부분이 같은 것은 ①, @의 2 개이다.

- 16. 첫째항이 2, 공차가 2인 등차수열을 $\{a_n\}$ 이라 할 때, 수열 $b_n=2^{a_n}$ 이다. 수열 $\{b_n\}$ 에서 처음으로 2000보다 커지는 항은? (단, $\log 2=0.3010$)
 - ① 제5항 ② 제6항 ④ 제8항 ⑤ 제9항

 $a_n = 2n$ 이므로 $b_n = 2^{2n}$ $4^n > 2000$ 에서 $2n \log 2 > \log 2000$

· $n > \frac{3.3010}{0.6020} = 5.48 \times \times \times$ 따라서 제6항부터 처음으로 2000보다 커진다.

17. 다음 식의 값을 구하여라.

$$\log_{10} 2 + \log_{10} \left(1 + \frac{1}{2}\right) + \log_{10} \left(1 + \frac{1}{3}\right) + \dots + \log_{10} \left(1 + \frac{1}{99}\right)$$

▶ 답:

▷ 정답: 2

 $\begin{aligned} \log_{10} 2 \cdot (1 + \frac{1}{2})(1 + \frac{1}{3}) \cdots (1 + \frac{1}{99}) \\ &= \log_{10} \frac{2}{1} \cdot \frac{3}{2} \cdot \frac{4}{3} \cdots \frac{99}{98} \cdot \frac{100}{99} \\ &= \log_{10} 100 = 2 \end{aligned}$

18. 해수면의 빛의 밝기가 A인 어느 지역의 바닷물은 깊이가 일정하게 깊어질수록 빛의 밝기가 일정한 비율로 감소한다고 한다. 깊이가 xm 인 곳의 빛의 밝기를 L이라 하면 다음과 같은 관계가 있다.

 $L = Ak^x$ (단, $k = k \neq 1$ 인 양의 상수)

이 지역의 바다에서 깊이가 $20\mathrm{m}$ 인 곳의 빛의 밝기는 해수면의 빛의 밝기의 50%일 때, 물속에서의 빛의 밝기가 해수면의 빛의 밝기의 $\frac{1}{6}$ 이 되는 지점의 수심은 $a\mathrm{m}$ 이다. 이때, 실수 a의 값을 구하여라. (단, $\log_2 3 = 1.6$)

Tibg₂ 5 — 1.0)

▷ 정답: 72

고이가 20m인 곳의 빛의 밝기는 해수면의 빛의 밝기 *A* 의 50%

이므로 $Ak^{20} = \frac{1}{2}A \quad \therefore \quad k = \left(\frac{1}{2}\right)^{\frac{1}{20}} = 2^{-\frac{1}{20}}$

 $Ak^{20} = \frac{1}{2}A$ $\therefore k = \left(\frac{1}{2}\right)^{20}$ 따라서, 빛의 밝기가 해수면의 빛의 밝기의 $\frac{1}{6}$ 이 되는 지점의

수심을 xm 라 하면 $A \cdot 2^{-\frac{x}{20}} = \frac{1}{6}A \quad \therefore 2^{-\frac{z}{20}} = \frac{1}{6}$

 $-\frac{x}{20} = \log_2 \frac{1}{6} = -\log_2 6$ $\therefore x = 20(\log_2 2 + \log_2 3)$

위의 식의 양변에 밑이 2인 로그를 취하면

= 20(2 + 1.6) = 72(m)

19. 어떤 용기에 있는 물의 양은 전날 같은 시각의 물의 양의 9% 만큼 줄어든다고 한다. 이와 같은 비율로 물의 양이 줄어들 때, 8일이 지난 후의 물의 양은 처음 양의 $\frac{1}{K}$ 배이다. 이때, 100K의 값을 구하여라. (단, $\log 0.213 = \bar{1}.328$, $\log 9.1 = 0.959$ 로 계산한다.)

용기의 현재 물의 양을 α 라 하면 8일 후의 물의 양은 $\alpha(0.91)^8$

이다. $\alpha(0.91)^8 = \frac{1}{K}\alpha$ 에서 $\frac{1}{K} = (0.91)^8$ 이때, $\log 0.91 = -1 + 0.959 = -0.041$ 이므로

 $\log \frac{1}{K} = 8 \log 0.91 = -0.328$ $\therefore \log K = 0.328$

조건에서 $\log 0.213 = \bar{1}.328$ 이므로

K = 2.13 $\therefore 100K = 213$

20. $N=(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)\cdots(2^{512+1})$ 일 때, N+1은 몇자리 정수인지 구하여라. (단, $\log 2 = 0.3$ 으로 계산한다.)

▶ 답:

▷ 정답: 308

 $N = (2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)\cdots(2^{512+1})$ $= (2-1)(2+1)(2^{2}+1)(2^{4}+1)(2^{8}+1)(2^{16}+1)\cdots(2^{512+1})$ $=2^{1024}-1$ 에서 $N+1=2^{1024}$ $\therefore \log(N+1) = \log 2^{1024} = 1024 \log 2 = 1024 \times 0.3 = 307.2$ 따라서 N+1 의 상용로그의 지표가 307이므로 N+1은 308자리 정수이다.