- 1. 다항식 $5xy yx^2 + 2x^3 + 2yz^2$ 에 대한 설명 중 옳지 <u>않은</u> 것은?
 - ② x²의 계수는 -y이다.
 - ③ *x*에 대한 3차식이다.

① *x*의 계수는 5*y*이다.

- ④ *x*에 대한 상수항은 2*yz*²이다.
- ③y, z에 대한 2차식이다.

y, z에 대한 3차식이다.

해설

- **2.** 다항식 $A = x^2 x + 1$, $B = 3x^2 2x 1$ 에 대하여 X + 2A = B를 만족하는 다항식 *X*를 구하면?
 - ① $x^2 + 3x + 1$ ② $x^2 1$ ③ $x^2 3$

해설 X = B - 2A $= (3x^2 - 2x - 1) - 2(x^2 - x + 1)$ $= x^2 - 3$

- **3.** $x^2y(-xy)^3$ 을 간단히 하면?
 - ① $-x^4y^5$ ② xy^5 ③ $-x^5y^4$ ④ $-xy^5$ ⑤ x^2y^5

 $x^{2}y(-xy)^{3} = x^{2}y(-x^{3}y^{3}) = -x^{5}y^{4}$

4. 다음 식을 계산했을 때, 몫은?

$$(4x^4 - 5x^3 + 3x^2 - 4x + 1) \div (x^2 - x + 1)$$

- ① $4x^2 3x + 2$ ② $4x^2 x 2$ ③ $4x^2 2x + 1$

해설

 $4 -4x^2 - x - 2$ $5 -4x^2 + x - 2$

 \therefore 몫 : $4x^2 - x - 2$, 나머지 : -5x + 3

- **5.** $(x-2y-3z)^2$ 을 전개하여 x에 대한 내림차순으로 정리하면?
 - ① $x^2 + 4y^2 + 9z^2 4xy + 12yz 6zx$ ② $x^2 - 4xy + 4y^2 - 9z^2 + 12yz - 6zx$
 - $3x^2 (4y + 6z)x + 4y^2 + 12yz + 9z^2$
 - $4y^{2} + 12yz + 9z^{2} + (-4y 6z)x + x^{2}$
 - $4y^{2} + 12yz + 9z^{2} + (-4y 6z)x + x^{2}$ $5y^{2} + 4y^{2} + x^{2}$

 $(x-2y-3z)^2 = x^2 - (4y+6z)x + 4y^2 + 12yz + 9z^2$

- 다항식 $(a-b)(a^2+ab+b^2)$ 을 전개하면? 6.
 - ① $a^2 b^2$ ③ $a^3 + b^3$
- ② $a^3 b^3$

7. 1999 × 2001 의 값을 구하려 할 때, 가장 적절한 곱셈공식은?

①
$$m(a+b) = ma + mb$$

② $(a+b)^2 = a^2 + 2ab + b^2$

$$(3)(a-b)(a+b) = a^2 - b^2$$

①
$$(x+a)(x+b) = x^2 + (a+b)x + ab$$

③ $a^2 + b^2 = (a+b)^2 - 2ab$

해설

 $1999 \times 2001 = (2000 - 1) \times (2000 + 1)$ $= 2000^{2} - 1^{2}$

8. 다항식 $(x^2 + 2x - 3)(3x^2 + x + k)$ 의 전개식에서 일차항의 계수가 15일 때, 상수 k의 값은?

① -3 ② 0 ③ 3 ④ 6

해설

상수항과 일차항만의 곱을 구하면, -3x + 2kx = 15x

 $\therefore k = 9$

9. x+y+z=3, xy+yz+zx=-1 일 때 $x^2+y^2+z^2$ 의 값을 구하면?

① 11 ② 12 ③ 13 ④ 14 ⑤ 15

 $\begin{vmatrix} x^2 + y^2 + z^2 = (x + y + z)^2 - 2(xy + yz + xz) \\ = 9 + 2 = 11 \end{vmatrix}$

10. 다음 등식이 x에 대한 항등식이 되도록 상수 a,b,c의 값을 정할 때, a+b+c의 값은?

$$a(x-1)(x+1) + b(x-1) + c(x+1) = 2x^2 + x + 1$$

①3

② 2 ③ 1 ④ 0 ⑤ -1

좌변을 전개하여 우변과 계수를 비교하면

해설

a = 2, b = -1, c = 2

x^2 의 계수가 2이므로 a=2

해설

x=1 대입, c=2

x = -1 대입, b = -1

 $\therefore a+b+c=3$

- **11.** 등식 $ax^2 (2a+c)x 1 = (b-2)x^2 + (b+c)x c$ 가 x의 값에 관계없이 항상 성립할 때, a+b+c의 값은?

주어진 식에서 동류항의 계수를 비교하면 $a=b-2, \ -(2a+c)=b+c, \ 1=c$

 a - b = -2, -2a - b = 2

 두 식을 연립하여 풀면

$$a = -\frac{4}{3}, b = \frac{2}{3}$$

$$a = -\frac{4}{3}, b = \frac{2}{3}$$

$$a + b + c = -\frac{4}{3} + \frac{2}{3} + 1 = \frac{1}{3}$$

- 12. 다음 등식 중에서 x에 어떤 값을 대입하여도 항상 성립하는 것을 모두 고르면?
 - ① $(x-2)(x+2) = x^2 4$ ② $x^2 x = x(x+2)$
 - (3) $(x+y)^2 = x^2 + 2xy + y^2$ (4) x(x-2) = 0

해설 ②는 x = 0일 때만 성립하고,

④는 x = 0, 2일 때만 성립한다.

그리고 ⑤는 y = 0일 때만 성립한다. ①과 ③은 모든 실수에 대하여 성립한다.

13. 임의의 실수 x에 대하여 $x^2-3x+2=a+bx+cx(x-1)+dx(x-1)(x-2)$ 가 항상 성립할 때, a+b+c+d의 값을 구하면? (단, a, b, c, d는 상수)

1

② 2 ③ 3 ④ 4 ⑤ 5

해설 x = 0을 대입하면 a = 2

x=1을 대입하면 b=-2

x = 2을 대입하면 c = 1

3차항은 없으므로d=0 $\therefore a+b+c+d=1$

14. 임의의 실수 x, y에 대하여, $(x+y)a^2+(x-y)b=4x+y$ 가 성립할 때, a^2+b^2 의 값은?

① $\frac{13}{4}$ ② $\frac{15}{4}$ ③ $\frac{17}{4}$ ④ $\frac{19}{4}$ ⑤ $\frac{21}{4}$

 $(a^{2} + b)x + (a^{2} - b)y = 4x + y$ $a^{2} + b = 4 \cdots ①, a^{2} - b = 1 \cdots ②$ $①, ② \quad A \quad a^{2} = \frac{5}{2}, b = \frac{3}{2}$ $\therefore a^{2} + b^{2} = \frac{19}{4}$

 ${f 15.} \quad (x+1)^5 = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5$ 이 x에 대한 항등식일 때, $a_0 + a_1 + a_2 + a_3 + a_4 + a_5$ 의 값을 구하면?

① 8

② 16

3 32

4 64 5 128

양변에 x = 1을 대입하면,

 $(1+1)^5 = a_0 + a_1 + \cdots + a_5$ 이므로 $\therefore 2^5 = 32$

해설