
나 다음 그래프 중 평행이동에 의하여
$$y = \frac{1}{x}$$
 의 그래프와 겹쳐지는 것은?

 $y = \frac{x-2}{x-1}$

①
$$y = \frac{x+1}{x-1}$$
 ② $y = \frac{x}{x-1}$ ③ y
④ $y = \frac{-x}{x-1}$ ⑤ $y = \frac{x+3}{x+1}$

$$y = \frac{1}{x}$$
과 겹쳐지는 함수는 $y = \frac{1}{x-a} + b$ 의
꼴로 된 것이다.
$$\therefore ② y = \frac{x}{x-1} = \frac{x-1+1}{x-1} = 1 + \frac{1}{x-1}$$

2. y = f(x)의 그래프가 오른쪽 그림과 같을 때, 방정식 $(f \circ f)(x) = 1$ 의 서로 다른 실근의 개수는?

③ 3 개

④ 4 개

$$f(x) = \begin{cases} y = x(x \le 2) & \cdots \\ y = -x + 4(x > 2) & \cdots \\ & \text{output} \end{cases}$$

$$\text{output} f(x) = \begin{cases} y = x(x \le 2) & \cdots \\ y = -x + 4(x > 2) & \cdots \\ & \text{output} \end{cases}$$

$$\text{output} f(x) = f(x) = f(x)$$

$$\text{output} f(x) = f(x) = f(x)$$

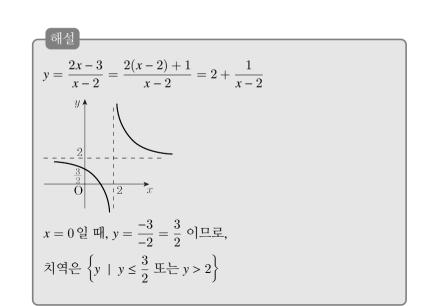
$$\text{output} f(x) = f(x) = f(x)$$

①에서는 $(f \circ f)(x) = f(f(x)) = f(-x+4)$ = -x+4

$$\therefore x = 3$$

3. 함수 f(x) = 4x - 1의 역함수를 g(x)라 할 때, 함수 f(3x)의 역함수를 g(x)로 나타내면 무엇인가?

①
$$g\left(\frac{x}{3}\right)$$
 ② $3g(x)$ ③ $g(3x)$ ④ $\frac{1}{3}g(3x)$


$$x = \frac{1}{4}y + \frac{1}{4}$$
이 때, x 와 y 를 바꾸면
$$f^{-1}(x) = g(x) = \frac{1}{4}x + \frac{1}{4}$$
 또, $f(3x) = 12x - 1$ 에서 $f(3x) = y$ 로 놓고 $y = 12x - 1$ 을 x 에 관하여 정리하면
$$x = \frac{1}{12}y + \frac{1}{12}$$

 $\therefore f^{-1}(3x) = \frac{1}{12}x + \frac{1}{12} = \frac{1}{3}\left(\frac{1}{4}x + \frac{1}{4}\right) = \frac{1}{3}g(x)$

f(x) = 4x - 1에서 f(x)를 y로 놓고 y = 4x - 1을 x에 관하여 정리하면

4. 분수함수 $y = \frac{2x-3}{x-2}$ 의 정의역이 $\{x \mid x \ge 0\}$ 일 때, 다음 중 치역을 바르게 구한 것은?

①
$$\left\{ y \mid \frac{3}{2} < y < 2 \right\}$$
 ② $\left\{ y \mid \frac{3}{2} \le y < 2 \right\}$ ③ $\left\{ y \mid y \le \frac{3}{2} \ \text{\mathrev{\mathr$

5. $y = \sqrt{x+2}$ 와 $x = \sqrt{y+2}$ 의 교점의 좌표를 P (a, b)라 할 때, a+b 의 값을 구하면?

① 1 ② 2 ③ 3 3 ④ 4 ⑤
$$\frac{7}{5}$$

두 곡선은 직선
$$y = x$$
에 대하여 대칭이므로
두 곡선의 교점은 $y = \sqrt{x+2}$ 와 $y = x$ 와의
교점이다.
 $\sqrt{x+2} = x$ 에서 $x^2 = x+2$
 $\therefore x^2 - x - 2 = 0$
 $(x-2)(x+1) = 0$ 에서

(:: P(a, b)는 제 1 사분면에 존재한다.)

해설

x = -1 또는 x = 2∴ P(a, b) = P(2, 2)