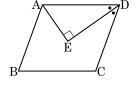
1. 다음 그림에서 DE // BC 이고 △ADE = 48 cm² 일 때, □DBCE 의 넓이를 구하여라.

D 16 cm E

 답:
 cm²


 > 정답:
 99 cm²

해설

 $\triangle ADE$, $\triangle ABC$ 의 닮음비는 16:28=4:7 넓이의 비는 $4^2:7^2=16:49$ 이므로

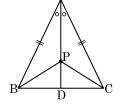
 \triangle ADE : □DBCE = 16 : (49 – 16) = 16 : 33 48 : □DBCE = 16 : 33 ∴ □DBCE = 99 (cm²)

2. 평행사변형 ABCD 에서 ∠BAD = 110°이 다. 점 A 에서 $\angle D$ 의 이등분선에 내린 수선 의 발을 E 라 할 때, ∠BAE 의 크기를 구하 여라.

▷ 정답: 55_°

▶ 답:

 $\angle A = 110\,^{\circ}$


 $\angle D = 70^{\circ}$

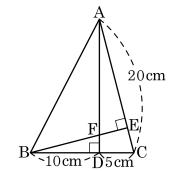
해설

 $\angle ADE = 35^{\circ}$

 $\angle \mathrm{DAE} = 180\,^{\circ} - 90\,^{\circ} - 35\,^{\circ} = 55\,^{\circ}$ \therefore $\angle BAE = 110^{\circ} - 55^{\circ} = 55^{\circ}$

3. 다음 그림과 같이 $\overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC에서 $\angle A$ 의 이등분선과 \overline{BC} 와의 교점을 D라 하자. \overline{AD} 위의 한점 P에 대하여 다음 중 옳지 <u>않은</u> 것은?

 \bigcirc $\angle ADB = 90^{\circ}$


 $\bigcirc \overline{BP} = \overline{BD}$

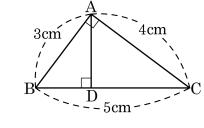
① $\overline{\mathrm{BD}} = \overline{\mathrm{CD}}$

①,③ 이등변삼각형에서 꼭지각의 이등분선은 밑변을 수직이등

분하므로 $\overline{BD}=\overline{CD}$, $\angle ADB=90$ °이다. ④,⑤ $\overline{AB}=\overline{AC}$, $\angle BAP=\angle CAP($ 가정), $\overline{AP}($ 공통)이므로 합동조건(\overline{SAS} 합동)에 의하여 $\triangle ABP\equiv\triangle ACP$ 이다.

 $\triangle ABC$ 의 꼭짓점 A, B 에서 변 BC, CA 에 내린 수선의 발을 각각 D, E, \overline{BE} 와 \overline{AD} 의 교점을 F 라 할 때, \overline{CE} 의 길이는? 4.

- ① $\frac{15}{4}$ cm ② 4 cm ④ $\frac{9}{2}$ cm ⑤ $\frac{19}{4}$ cm
- $3 \frac{17}{4} \text{ cm}$


△BCE ∽ △ACD (AA 닮음) 이므로

 $\overline{\mathrm{BC}}:\overline{\mathrm{AC}}=\overline{\mathrm{CE}}:\overline{\mathrm{CD}}$

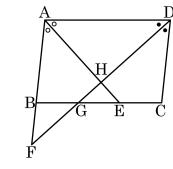
 $(10+5):20 = \overline{CE}:5$

 $3: 4 = \overline{CE}: 5$ $4\overline{CE} = 15$ $\therefore \overline{CE} = \frac{15}{4} \text{ (cm)}$

5. 다음 그림과 같은 직각삼각형 ABC 에서 $\overline{\mathrm{AD}} \bot \overline{\mathrm{BC}}$ 일 때, $\Delta \mathrm{ABC}$ 와 $\Delta \mathrm{DBA}$ 의 넓이의 비와 $\Delta \mathrm{ABD}$ 와 $\Delta \mathrm{ACD}$ 의 넓이의 비를 차례대로 나열한 것은?

④ 25:9, 16:9 ⑤ 16:25, 9:16

① 9:25, 25:16 ② 9:25, 9:16


③25:9,9:16

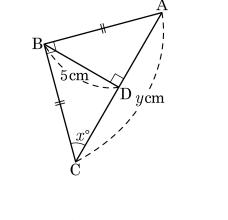
해설

 $\triangle ABC$ 와 $\triangle DBA$ 에서 \overline{BC} : \overline{BA} = 5 : 3 이므로 $\triangle ABC$:

 $\triangle DBA = 25:9$ 이다. 또한, $\triangle ABD$ 와 $\triangle ACD$ 에서 $\overline{AB}:\overline{AC}=3:4$ 이므로 $\triangle ABD:$ $\triangle ACD = 9:16$ 이다.

6. 다음 그림에서 \overline{AE} , \overline{DF} 는 각각 $\angle A$, $\angle D$ 의 이등분선이다. $\angle ABC=84^\circ$ 일 때, $\angle AEC+\angle DCE$ 의 크기를 구하여라.

- ① 208° ② 228° ③ 238° ④ 248° ⑤ 250°
 - $\angle A = 180^{\circ} \angle B = 180^{\circ} 84^{\circ} = 96^{\circ}$


$$\angle AEC = 180^{\circ} - \frac{1}{2} \angle A$$

$$= 180^{\circ} - \frac{1}{2} \times 96^{\circ}$$
$$= 180^{\circ} - 48^{\circ} = 132^{\circ}$$

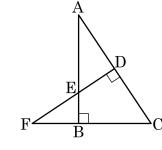
$$\angle C = \angle A = 96^{\circ}$$

$$\therefore \angle AEC + \angle DCE = 132^{\circ} + 96^{\circ} = 228^{\circ}$$

7. 다음 그림과 같이 $\overline{AB}=\overline{BC}$, $\angle B=90\,^{\circ}$ 인 직각이등변삼각형 ABC에서 $\angle B$ 의 이등분선과 \overline{AC} 의 교점을 D라 하자. 이 때, x-y의 값은?

① 30 ② 32

335


4 37 **5** 39

$$\angle C = \frac{1}{2}(180\degree - 90\degree) = 45\degree$$

 $\therefore x = 45$
 $\angle C = \angle CBD = 45\degree$ 이므로

 $\Delta {
m CBD}$ 는 $\overline{
m BD}=\overline{
m CD}=5\,{
m cm}$ 인 이등변삼각형이고, 점 D는 $\overline{
m AC}$ 의 중점이므로 y = 10

 $\therefore x - y = 45 - 10 = 35$

8. 다음 그림에서 ∠ABC = ∠FDC = 90° 일 때, 다음 중 서로 닮음이 <u>아닌</u> 것은?

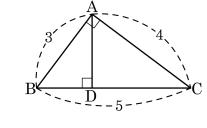
④ △FBE

① $\triangle ABC$

② △FDC ③ △EBC

③ △ADE

해설 △ABC 와 △FDC 에서

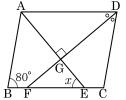

∠ABC = ∠FDC = 90°, ∠C 는 공통 ∴ △ABC ∽ △FDC (AA 닮음) △ABC 와 △ADE 에서 ∠ABC = ∠ADE = 90°, ∠A 는 공통 ∴ △ABC ∽ △ADE (AA 닮음)

△ABC 와 △FBE에서 ∠ABC = ∠FBE = 90°

 $\angle A = 90^{\circ} - \angle C = \angle F$

.: △ABC ♡ △FBE (AA 닮음)

9. 다음 그림의 직각삼각형 ABC 의 꼭짓점 A 에서 빗변 BC 에 내린 수선의 발을 D 라고 할 때, \triangle ABD, \triangle CAD, \triangle CBA 의 넓이의 비는?


① 1:2:3 ④ 5:8:12 ② 2:4:9 ③9:16:25

③ 3:5:7

해설

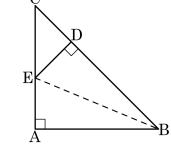
닮음비가 3:4:5 이므로, 넓이의 비는 $3^2:4^2:5^2=9:16:25$

10. 다음 그림의 평행사변형 ABCD 의 꼭짓점 A 에서 $\angle D$ 의 이등분선 \overline{DF} 에 내린 수선이

① 45

250

③ 55 ④ 60 ⑤ 65


□ABCD 가 평행사변형이므로

 $\angle A = \angle C, \angle B = \angle D = 80$ ° 이다. $\angle ADF = \angle CDF = \angle \frac{D}{2} = 40$ 이코,

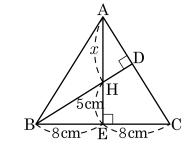
 $\angle AGD = \angle FGE = 90^{\circ}$

 $\therefore \angle x = 180^{\circ} - (90^{\circ} + 40^{\circ}) = 50^{\circ}$

11. 다음 그림의 $\triangle ABC$ 는 $\angle A=90^\circ$, $\overline{AB}=\overline{AC}$ 인 직각이등변삼각형이다. $\overline{BA}=\overline{BD},\ \overline{ED}=\overline{DC}$ 일 때, 다음 중 옳지 <u>않은</u> 것은?

 $\overline{\text{3}}\overline{\text{AE}} = \overline{\text{EC}}$

① $\triangle ABE \equiv \triangle DBE$


- ② $\angle DBE = \angle ABE$ ④ $\overline{AE} = \overline{DE} = \overline{DC}$

① ABE와 ADBE는

해설

- BA = BD, BE는 공통, ∠BAE = ∠BDE = 90°
 - ∴ △ABE ≡ △DBE(SAS 합동) ② △ABE ≡ △DBE 이므로 ∠DBE = ∠ABE 이다.
- ④ $\triangle CDE$ 는 직각이등변삼각형이므로 $\overline{DE} = \overline{DC}$ 또 $\triangle ABE = \triangle DBE(SAS합동)$ 이므로 $\overline{AE} = \overline{DE}$
- ∴ $\overline{AE} = \overline{DE} = \overline{DC}$ ⑤ △ABC는 직각이등변삼각형이므로 ∠C = 45°
 - \triangle CDE에서 \angle DEC = 180° (90° + 45°) = 45° \therefore \angle DEC = \angle DCE
- ∴ ∠DEC = ∠DCE

12. $\triangle ABC$ 에서 $\overline{BE} = \overline{CE} = 8cm$, $\overline{HE} = 5cm$ 일 때, x 의 길이는?

4 6cm

 \bigcirc 4cm

② 7.4cm ⑤ 7.8cm ③ 12.8cm

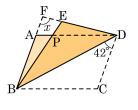
△HBE ♡ △CAE (AA 닮음)

 $\overline{\text{HE}} : \overline{\text{EB}} = \overline{\text{CE}} : \overline{\text{EA}}$ 5 : 8 = 8 : (x + 5)

5: 8 = 8: (x+5)5(x+5) = 64

5(x+5) = 645x = 39

 $\therefore x = 7.8 (\text{cm})$


- ${f 13.}$ 다음 그림과 같이 ${f AD} /\!/ {f BC}$ 인 사다리꼴 □ABCD 에 대하여 다음 중 옳지 <u>않은</u> 것 은?
 - ① $\triangle OAB = \triangle OCD$ ② $\triangle ABC = \triangle DCB$

 - \bigcirc $\overline{OA} : \overline{OC} = a : b$

 - ⑤ △OAB ∽ △ODC

⑤ $\triangle OAB$ 와 $\triangle ODC$ 의 넓이는 같지만 닮음은 아니다.

14. 다음 그림과 같이 평행사변형 ABCD 를 대 각선 BD 를 따라 접어 Δ DBC 가 Δ DBE 로 옮겨졌다. $\overline{\mathrm{DE}},\ \overline{\mathrm{BA}}$ 의 연장선의 교점을 F 라 하고 $\angle BDC = 42$ °일 때, $\angle x = \square$ °이다. □ 의 값은?

① 94

③ 98 ④ 100

⑤ 102

 $\overline{\mathrm{AD}}\,/\!/\,\overline{\mathrm{BC}}$ 이므로

해설

∠CBD = ∠ABD = $42 \circ \bigcirc$ ¬¬¬,

 ΔEDB 는 ΔCDB 를 접어올린 것이므로

 $\angle \text{CDB} = \angle \text{EDB} = 42$ ° 이다.

 ΔFBD 의 내각의 합이 180 ° 임을 이용하면

 $\angle x + 42^{\circ} \times 2 = 180^{\circ}$ \therefore $\angle x = 96^{\circ}$

- 15. 다음 그림과 같이 $\angle C = 90$ $^{\circ}$ 인 $\triangle ABC$ 에 서 $\angle A$ 의 이등분선과 \overline{AB} 의 수직이등분선이 $\overline{\mathrm{BC}}$ 위의 점 D에서 만날 때, $\angle\mathrm{MAD}$ 의 크기 는? ③30° ① 10° ② 20°
- ④ 40° ⑤ 50°

해설

 $\triangle ACD \equiv \triangle AMD$ (RHA합동),

 $\triangle AMD \equiv \triangle BMD (SAS합동) 이므로$ $\angle ADC = \angle ADM = \angle BDM$

한편 $\angle ADC + \angle ADM + \angle BDM = 180$ °이므로 $\angle ADC = \angle ADM = \angle BDM = 60^{\circ}$

따라서 ∠MAD = 30°이다.