1. 다음 보기 조건을 만족하는 다각형을 말하여라.

⊙ 8 개의 선분으로 둘러싸여 있다.

- ⓒ 모든 변의 길이가 같다.
- © 모든 내각의 크기가 같다.

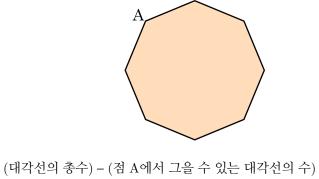
답:▷ 정답: 정팔각형

8 개의 선분으로 둘러싸여 있으므로 팔각형이고, 변의 길이와

해설

내각의 크기가 모두 같으므로 정팔각형이다.

2. 다음 그림의 팔각형에 대하여 다음을 구하면?

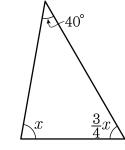


① 11 ② 12 ③ 13 ④ 14

③15

$$\frac{8(8-3)}{2} - 5 = 20 - 5 = 15(7)$$

3. 다음 그림에서 $\angle x$ 의 크기를 구하여라.



▶ 답:

▷ 정답: 80°

 $40^{\circ} + x + \frac{3}{4}x = 180^{\circ}$ $\frac{7}{4}x = 140^{\circ}$ $\therefore \ \angle x = 80^{\circ}$

4. 내각과 외각의 크기의 총합이 1620 ° 인 다각형의 변의 개수를 구하여 라.

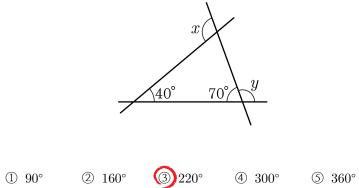
<u>개</u> ▶ 답: ▷ 정답: 9 <u>개</u>

n 각형에서

해설

 $180^{\circ} \times (n-2) + 360^{\circ} = 1620^{\circ}$ $\therefore n = 9 \ () \})$

5. 다음 그림의 $\angle x + \angle y$ 의 값으로 옳은 것은?



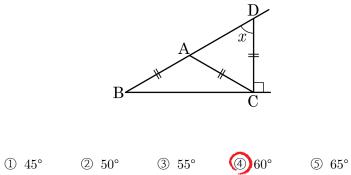
 $\angle x$ 는 맞닿아 있지 않은 삼각형의 두 내각의 합과 같으므로, $\angle x$ =

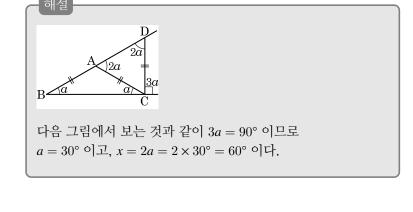
해설

 $40^{\circ} + 70^{\circ} = 110^{\circ}$, $\angle y$ 와 맞닿아 있는 삼각형의 내각의 합은 180° 이므로, $\angle y=$ 180° - 70° = 110° 이다.

 $\angle x + \angle y = 110^{\circ} + 110^{\circ} = 220^{\circ}$ 이다.

6. 다음 그림에서 $\angle x$ 의 크기는?





▷ 정답: 30<u>°</u>

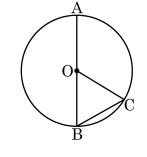
다음 _____ 안에 알맞은 수를 구하여라.

해설

7.

다각형의 외각의 크기의 합은 360° 이므로 $\frac{360^\circ}{12} = 30^\circ$ 이다.

8. 다음은 θ O 에 대한 설명이다. 옳지 <u>않은</u> 것은?

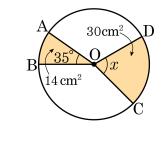


- ① 호 BC 에 대한 중심각은 ∠BOC 이다. ② 선분 AB 는 가장 긴 현이다.
- ③ 호 AC 와 반지름 OA, OC 로 둘러싸인 도형은 부채꼴이다. ④ 원 위의 두 점 A, C 를 양 끝점으로 하는 호는 1 개이다.
- ⑤ 현 BC 와 호 BC 로 둘러싸인 도형은 활꼴이다.

해설

④ 원 위의 두 점 A, C 에 대해 2 개의 호가 생긴다. 일반적으로 짧은 쪽의 호를 $5.0 \mathrm{ptAC}$ 로 표시하고 긴 쪽의 호는 두 점 A, C 중간에 점 P 를 잡아 $5.0 \mathrm{pt} 24.88 pt$ APC 로 표시한다.

다음 그림의 원 O 에서 ∠AOB = 35°, 부채꼴 AOB 의 넓이가 14cm², 9. 부채꼴 COD 의 넓이가 30cm^2 일 때, $\angle x$ 의 크기는?



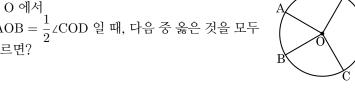
① 60° ② 68° 372°

⑤ 80°

부채꼴의 넓이는 중심각의 크기에 정비례하므로, $14:30 = 35^{\circ}: x$

 $\therefore \ \angle x = 75^\circ$

10. 다음 그림과 같이 원 O 에서 $\angle AOB = \frac{1}{2}\angle COD$ 일 때, 다음 중 옳은 것을 모두 고르면?



- ①(부채꼴OCD 의 넓이) = 2x (부채꼴OAB 의 넓이)
- $\bigcirc 5.0 pt \widehat{AB} = \frac{1}{2} 5.0 pt \widehat{CD}$
- $\triangle COD = 2\triangle AOB$

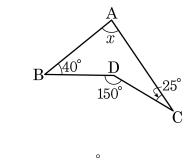
③ $\overline{\mathrm{AB}} \, / \! / \, \overline{\mathrm{CD}} \, \mathrm{인지}$ 아닌지는 알 수 없다.

- ④ 삼각형의 넓이는 중심각의 크기에 정비례하지 않는다.
- ⑤ 현의 길이는 중심각의 크기에 정비례하지 않는다.

- **11.** 반지름의 길이가 8 cm 이고, 중심각의 크기가 45° 인 부채꼴의 넓이
 - $4 \ 8\pi \text{cm}^2$ $5 \ 10\pi \text{cm}^2$
- - ① $2\pi \text{cm}^2$ ② $4\pi \text{cm}^2$ ③ $6\pi \text{cm}^2$

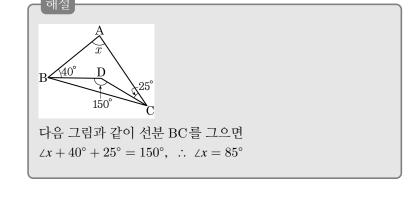
 $\pi \times 8^2 \times \frac{45^{\circ}}{360^{\circ}} = 8\pi (\text{cm}^2)$

12. 다음 그림에서 $\angle x$ 의 크기를 구하여라.

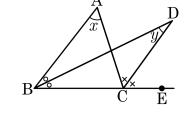


➢ 정답: 85_°

▶ 답:



13. 다음 그림에서 $\angle ABC$ 의 이등분선과 $\angle ACE$ 의 이등분선의 교점을 점D 라 할 때, $\angle x$ 는 $\angle y$ 의 몇 배인지 구하여라.



배

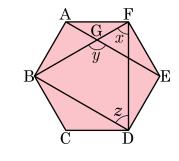
정답: 2<u>배</u>

▶ 답:

 $\angle x + \angle B = 2(\angle y + \angle DBC)$ 인데 $\angle B = 2\angle DBC$ 이므로 $\angle x = 2\angle y$

이다. 따라서 2 배이다.

14. 다음 그림의 정육각형에서 $\angle x + \angle y - \angle z$ 의 크기를 구하면?



② 130° ③ 140° ④ 150°

⑤ 160°

정육각형이므로 $\triangle ABF$, $\triangle FAE$, $\triangle CDB$ 는 합동인 이등변 삼각

① 120°

형이다. $\angle ABF = \angle AFB = (180^{\circ} - 120^{\circ}) \times \frac{1}{2} = 30^{\circ},$

 $\label{eq:fae} \angle FAE = \angle FEA = (180^\circ - 120^\circ) \times \frac{1}{2} = 30^\circ,$

 $\angle CDB = \angle CBD = (180^{\circ} - 120^{\circ}) \times \frac{1}{2} = 30^{\circ}$

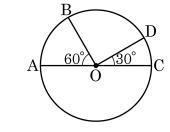
또한, 삼각형의 두 내각의 합은 다른 한 외각의 크기와 같고, $\angle y = \angle AGF (맞꼭지각)이므로$ $\angle y = \angle \mathrm{AGF} = 180^{\circ} - (\angle \mathrm{FAE} + \angle \mathrm{AFB}) = 180^{\circ} - (30^{\circ} + 30^{\circ}) =$

120° 이다. 또한, △FBD 가 정삼각형이므로

 $\angle x = \angle z = \angle \text{BFD} = \angle \text{AFE} - \left(\angle \text{AFB} + \angle \text{EFD}\right) = 120^{\circ} - \left(30^{\circ} + \frac{1}{2}\right)$ 30°) = 60° 이다.

따라서 $\angle x + \angle y - \angle z = 60^{\circ} + 120^{\circ} - 60^{\circ} = 120^{\circ}$ 이다.

15. 다음 그림에서 \overline{AC} 는 원 O 의 지름이고 $\angle AOB = 60^\circ$, $\angle COD = 30^\circ$ 일 때, 다음 중 옳은 것을 모두 고르면?

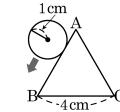


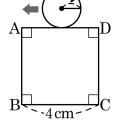
- $\overline{\text{3}}\overline{\text{AB}} < 2\overline{\text{CD}}$
- \bigcirc $\triangle AOB = \triangle COD$

해설

- $\label{eq:delta-obj} \begin{tabular}{l} \begin{ta$

16. 다음 그림과 같이 정삼각형과 정사각형의 한 변의 길이가 각각 4 cm이다. 반지름의 길이가 1 cm 인 원을 정삼각형 위를 한 바퀴 돌 때, 지나간 자리의 넓이를 $a \text{cm}^2$, 반지름의 길이가 1 cm 인 원을 정사각형 위를 한 바퀴 돌 때, 지나간 자리의 넓이를 $b \text{cm}^2$ 라고 할 때, b-a 의 값을 구하여라.





▷ 정답: 8

해설

▶ 답:

이다. $(정사각형 위를 지날 때 넓이) = 4 \times 2 \times 4 + \pi 2^2 = 32 + 4\pi (\mathrm{cm}^2)$

(정삼각형 위를 지날 때 넓이) = $4 \times 2 \times 3 + \pi 2^2 = 24 + 4\pi (\text{cm}^2)$

이다. 따라서 $b-a=32+4\pi-(24+4\pi)=8$ 이다.

17. 대각선의 총 개수가 54개인 다각형의 한 꼭짓점에서 그을 수 있는 대 각선의 개수를 a개, 내부의 한 점에서 각 꼭짓점에 선분을 그었을 때 생기는 삼각형의 개수를 b개라고 할 때, a, b의 값을 각각 구하여라.

▶ 답:

▶ 답:

➢ 정답: a = 9

▷ 정답: b = 12

구하는 다각형을 *n* 각형이라 하면

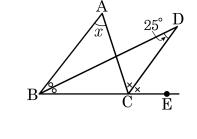
 $\frac{n(n-3)}{2} = 54$

 $n(n-3) = 108 = 12 \times 9$: n = 12

∴ a = n - 3 = 12 - 3 = 9내부의 한 점에서 각 꼭짓점에 선분을 그어서 생기는 삼각형의

수는 꼭짓점의 수와 같으므로 b = 12

18. 다음 그림에서 $\angle x$ 의 크기를 구하면?



① 40° ② 45°

③50°

④ 55° ⑤ 60°

 $\angle DCE = \angle CBD + 25^{\circ}$

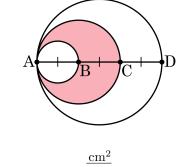
해설

 $2 \angle \text{DCE} = \angle x + 2 \angle \text{CBD}$ $= \angle x + 2(\angle DCE - 25^{\circ})$

 $= \angle x + 2 \angle \text{DCE} - 50^{\circ}$

 $\therefore \angle x = 50^{\circ}$

19. 다음 그림은 $\overline{AD}=6\mathrm{cm}$ 이고, $\overline{AB}=\overline{BC}=\overline{CD}$ 인 원이다. 색칠한 부분의 넓이를 구하여라.



정답: 3π cm²

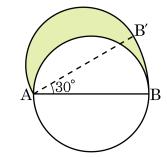
▶ 답:

색칠한 부분의 넓이는 $\overline{\rm AC}$ 를 지름으로 하는 원의 넓이에서 $\overline{\rm AB}$ 를 지름으로 하는 원의 넓이를 뺀 것과 같다. $\overline{AC} = 6 \times \frac{2}{3} = 4 \text{ (cm)}$

$$\overline{AB} = 6 \times \frac{1}{3} = 2 \text{ (cm)}$$

따라서 넓이는
$$\pi \times 2^2 - \pi \times 1^2 = 3\pi$$
 (cm²) 이다.

20. 다음 그림은 지름이 $10\,\mathrm{cm}$ 인 반원을 점 A 를 중심으로 $30\,^\circ$ 만큼 회전한 것이다. 이때, 색칠한 부분의 넓이를 구하면?



- ① $\frac{25}{4}\pi \text{ cm}^2$ ② $\frac{25}{3}\pi \text{ cm}^2$ ③ $\frac{25}{2}\pi \text{ cm}^2$ ④ $25\pi \text{ cm}^2$ ⑤ $50\pi \text{ cm}^2$

(넓이)

(넓이)
$$=\pi \times 5^2 \times \frac{1}{2} + \pi \times 10^2 \times \frac{30^\circ}{360^\circ} - \pi \times 5^2 \times \frac{1}{2}$$
$$=\frac{25}{3}\pi(\text{cm}^2)$$
(색칠한 부분의 넓이) = (부채꼴 BAB'의 넓이)