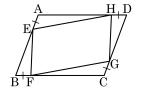
1. □ABCD 가 평행사변형이고, $\overline{AE} = \overline{BF} = \overline{CG} = \overline{DH}$ 일 때, □EFGH 도 평행사변형이다. 다음 중 옳지 않은 것은?



 $\odot \overline{EF} = \overline{HG}$

① $\triangle AEH \equiv \triangle CGF$

② $\triangle DGH \equiv \triangle BEF$ ④ $\overline{EH} = \overline{AH}$

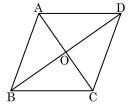
⑤ ∠EFG = ∠EHG

$\triangle AEH \equiv \triangle CGF \text{ (SAS 합동) 이므로 }\overline{EH} = \overline{FG}$

해설

 Δ DGH ≡ Δ BEF (SAS 합동) 이므로 $\overline{EF} = \overline{HG}$ 따라서 □EFGH 는 두 쌍의 대변의 길이가 각각 같은 평행사변형이다.

다음 그림과 같은 평행사변형 ABCD 에 대하여 두 대각선의 교점을 O라고 하자.
 △AOD = 20cm² 일 때, □ABCD의 넓이는?



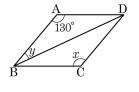
① 40cm² ④ 100cm² ② 60cm^2 ③ 120cm^2

 380cm^2

 ΔBOC 와 ΔAOD 는 같다. $\Delta AOD + \Delta BOC = \Delta AOB + \Delta DOC$ 이다.

그러므로 평행사변형 ABCD 는 80 cm² 이다.

3. □ABCD 가 마름모일 때, ∠x + ∠y = ()° 이다. () 안에 알맞은 수를 구하여라.



답:

➢ 정답: 155

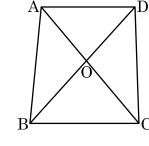
마름모의 네 변의 길이는 모두 같으므로 ΔABD 는 이등변삼각

해설

형이고 $\angle y = (180-130) \div 2 = 25$ 이고 $\angle A = \angle C$ 이므로 $\angle x = 130^\circ$ 이다.

따라서 $\angle x + \angle y = 130^{\circ} + 25^{\circ} = 155^{\circ}$ 이다.

4. 다음 그림은 $\overline{\rm AD}$ $//\overline{\rm BC}$ 인 사다리꼴이다. $\Delta {\rm ACD}=48{\rm cm}^2,~\Delta {\rm ABO}=24{\rm cm}^2$ 일 때, $\Delta {\rm AOD}$ 의 넓이는?



 $4 \ 22 \, \text{cm}^2$

 \bigcirc 24 cm²

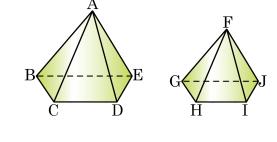
 $28 \,\mathrm{cm}^2$

- $3 20 \, \text{cm}^2$

 $\overline{\mathrm{AD}}$ $/\!/\overline{\mathrm{BC}}$ 이므로 $\Delta\mathrm{ABD} = \Delta\mathrm{ACD}$ 이고, $\Delta\mathrm{AOD}$ 는 공통이므로 $\Delta\mathrm{ABO} = \Delta\mathrm{DCO}$

따라서 $\triangle AOD = 48 - 24 = 24 (\text{ cm}^2)$

5. 다음 그림의 두 사각뿔이 A – BCDE ∽ F – GHIJ 일 때, 옳지 <u>않은</u> 것은?



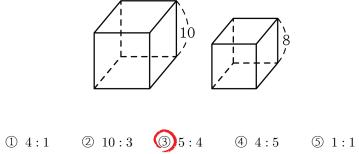
② 모서리 CD에 대응하는 모서리는 HI 이다.

① 모서리 AC에 대응하는 모서리는 FH 이다.

- ③ 면 ACD에 대응하는 면은 면 FHI 이다.
- ④ 점 D에 대응하는 점은 점 I 이다.
- ⑤면 ABE에 대응하는 면은 면 FGH 이다.

면 ABE에 대응하는 면은 면 FGJ 이다.

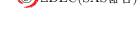
6. 다음 그림의 두 정육면체가 서로 닮은 도형일 때, 두 정육면체의 닮음비는?

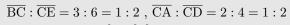


두 입체도형의 닮음비는 대응하는 모서리의 길이의 비와 같으므

로 10 : 8 = 5 : 4 이다.

- 다음의 그림에서 △ABC 와 닮음인 삼각형과 7. 닮음 조건을 바르게 짝지어 놓은 것은?
 - ① ΔEDC(SSS닭음)
 - ② ΔDEC(AA닮음)
 - ③ ΔCDE(SSS닭음) ④ ADEC(SSS닮음)
 - ⑤ ΔDEC(SAS닮음)

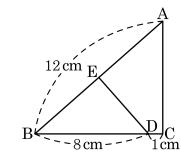




해설

 \angle ECD = \angle BCA(맞꼭지각) 따라서 $\triangle ABC \hookrightarrow \triangle DEC(SAS닮음)$ 이다.

8. 다음 그림의 $\triangle ABC$ 에서 $\overline{AE} = \overline{BE} = \overline{DE}$ 인 점 D,E를 정하고 $\overline{AB} = 12$, $\overline{BD} = 8$, $\overline{CD} = 1$ 일 때, \overline{AC} 의 길이를 구하면?



③ 11 cm

 $412 \, \mathrm{cm}$

 \bigcirc 13 cm

 $\overline{BC}: \overline{BE} = 9:6 = 3:2$, $\overline{AB}: \overline{DB} = 12:8 = 3:2$, $\angle B \stackrel{\leftarrow}{\sqsubseteq}$

△ABC와 △DBE에서

상통 △ABC ∽ △DBE (SAS 닮음)

 $3:2 = \overline{AC}:6$ $\therefore \overline{AC} = 9(\text{cm})$

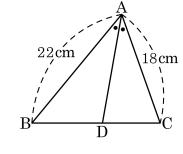
 $2 10 \, \mathrm{cm}$

 \therefore AC = 9(C)

①9 cm

해설

ΔABC 에서 ∠A 의 이등분선과 변 BC 의 교점을 D 라 할 때, ΔABD 9. 의 넓이가 $88 \mathrm{cm}^2$ 이면, $\Delta \mathrm{ADC}$ 의 넓이를 구하여라.



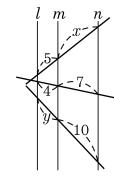
답: $\underline{\rm cm^2}$ ▷ 정답: 72<u>cm²</u>

 $\overline{\mathrm{AB}}:\overline{\mathrm{AC}}=\overline{\mathrm{BD}}:\overline{\mathrm{DC}}$ 이므로

 $\overline{\mathrm{BD}}:\overline{\mathrm{DC}}=11:9$ 따라서 $\triangle ABD$ 와 $\triangle ADC$ 의 넓이의 비는 11:9 이다.

 $11:9=88: \triangle ADC \quad \therefore \triangle ADC=72 (cm^2)$

10. 다음 그림에서 $l \parallel m \parallel n$ 일 때, xy 의 값을 구하여라.

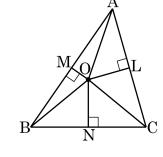


➢ 정답: 50

답:

5: x = 4: 7 = y: 10 $x = \frac{35}{4}, y = \frac{40}{7}$ 이므로 xy = 50이다.

11. 다음 그림과 같이 $\triangle ABC$ 의 두 변 $\overline{AB}, \overline{BC}$ 의 수직이등분선이 만나는 점 O 에서 변 \overline{AC} 에 내린 수선을 \overline{OL} 이라 할 때 다음 보기 중 옳은 것을 모두 고르면?



 \bigcirc $\overline{OM} = \overline{OL}$ $\ \, \ \, \ \, \overline{\mathrm{AL}}=\overline{\mathrm{CL}}$

▶ 답:

▶ 답:

답:

▷ 정답: ⑤

▷ 정답: ②

▷ 정답: □

점 O 는 삼각형 ABC 의 외심이다.

해설

 $\therefore \overline{\mathrm{AL}} = \overline{\mathrm{CL}} \cdots (\textcircled{L})$ $\triangle AOL \equiv \triangle COL \text{ (SAS 합동)} \cdots$ (@)

 $\triangle AOM$ 과 $\triangle BOM$ 에서 \overline{OM} 은 공통, $\overline{\mathrm{AM}} = \overline{\mathrm{BM}}$, $\angle\mathrm{OMA} = \angle\mathrm{OMB} = 90^{\circ}$

 $\triangle \mathrm{AOM} \equiv \triangle \mathrm{BOM}$ $\overline{\mathrm{OA}} = \overline{\mathrm{OB}}$

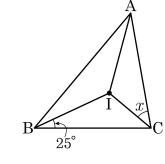
 ΔOBN 과 ΔOCN 에서 \overline{ON} 은 공통 $\overline{BN} = \overline{CN}$

 $\angle \mathrm{ONB} = \angle \mathrm{ONC} = 90^{\circ}$

 $\triangle \mathrm{OBN} \equiv \triangle \mathrm{OCN}$ $\overline{\mathrm{OB}} = \overline{\mathrm{OC}}$

 $\therefore \overline{\mathrm{OA}} = \overline{\mathrm{OB}} = \overline{\mathrm{OC}} \cdots \ (\ \bigcirc)$

12. 다음 그림에서 $\triangle ABC$ 는 $\overline{AC}=\overline{BC}$ 인 이등변삼각형, 점 I는 $\triangle ABC$ 의 내심이고. $\angle IBC = 25\,^{\circ}$ 일 때, $\angle x$ 의 값을 구하여라.



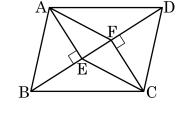
▷ 정답: 40_°

▶ 답:

 $\triangle ABC$ 는 $\overline{AC}=\overline{BC}$ 인 이등변삼각형이므로 $\angle A=\angle B$ 이고,

점 I는 $\triangle ABC$ 의 내심이므로 각의 이등분선의 교점이다. $\therefore \ \angle x = (180^{\circ} - 25^{\circ} \times 4) \div 2 = 40^{\circ}$

13. 다음 그림과 같이 평행사변형 ABCD 의 두 꼭짓점 A, C 에서 대각선 BD 에 내린 수선의 발을 각각 E, F 라 할 때, □AECF 는 평행사변형이다. 이용되는 평행사변형이 되는 조건은?



- ② 두 대각선이 다른 것을 이등분한다.
- ③ 두 쌍의 대변이 각각 평행하다.

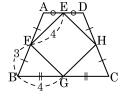
① 두 쌍의 대각의 크기가 각각 같다.

- ④ 한 쌍의 대변이 평행하고, 그 길이가 같다.
- ⑤ 두 쌍의 대변의 길이가 각각 같다.

$\triangle ABE \equiv \triangle CDF(RHA 합동)$ 이므로 $\overline{AE} = \overline{CF}$

 $\angle AEF = \angle CFE = 90^\circ$ (엇각)이므로 $\overline{AE}//\overline{CF}$ 따라서 한 쌍의 대변이 평행하고 그 길이가 같으므로 $\Box AECF$ 는 평행사변형이다.

14. 다음은 등변사다리꼴 ABCD 의 각 변의 중점을 E, F, G, H 라 할 때, □EFGH 의 둘레의 길이를 구하여라.

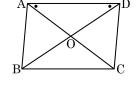


답:▷ 정답: 16

등변사다리꼴의 각 변의 중점을 차례로 연결하면 마름모가 된다.

따라서 □EFGH 의 둘레는 4 × 4 = 16 이다.

15. 다음 그림과 같은 평행사변형 ABCD 에 다 음 조건을 추가할 때, 직사각형이 되지 <u>않는</u> 것은?



 \bigcirc $\overline{AC} = \overline{BD}$

 $\overline{\text{AO}} = \overline{\text{DO}}$

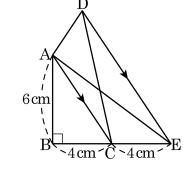
해설

① $\angle A = \angle B$

 $\textcircled{4}\overline{\mathrm{AC}}\bot\overline{\mathrm{BD}}$

④ $\overline{AC} \bot \overline{BD}$ 는 평행사변형이 마름모가 되는 조건

16. 다음 그림에서 \overline{AC} $/\!/ \overline{DE}$ 이고, $\overline{AB}=6\mathrm{cm}$, $\overline{BC}=\overline{CE}=4\mathrm{cm}$ 일 때, $\Box ABCD$ 의 넓이를 구하여라.



 $\underline{\mathrm{cm}^2}$

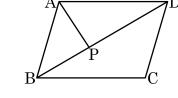
▷ 정답: 24 <u>cm²</u>

▶ 답:

 $\Box ABCD = \triangle ABC + \triangle ACD$ $= \triangle ABC + \triangle ACE$ $= \triangle ABE = \frac{1}{2} \times 8 \times 6 = 24 \text{(cm}^2)$

 $\overline{\mathrm{AC}}\,/\!/\,\overline{\mathrm{DE}}$ 이므로 $\triangle\mathrm{ACD}=\triangle\mathrm{ACE}$

17. 다음 그림의 평행사변형 ABCD 의 넓이는 $70 \mathrm{cm}^2$ 이고 $\overline{\mathrm{BP}}$: $\overline{\mathrm{PD}}$ = 2:3 이다. $\Delta\mathrm{ABP}$ 의 넓이는?



- \bigcirc 5cm²
- $2 10 \text{cm}^2$
- $\boxed{3}14\mathrm{cm}^2$
- $4 21 \text{cm}^2$
- $\odot 25 \text{cm}^2$

 $\triangle ABD = \frac{70}{2} = 35(cm^2) = \triangle ABP + \triangle ADP$ $2: 3 = \triangle ABP : \triangle APD$ $\therefore \triangle ABP = 35 \times \frac{2}{5} = 14(cm^2)$

 $oldsymbol{18}$. 다음 그림과 같은 평행사변형 $oldsymbol{\mathrm{ABCD}}$ 에서 점 $oldsymbol{\mathrm{MC}}$ 등 중점이다. $\overline{\mathrm{BD}}=12\mathrm{cm}$ 일 때, $\overline{\mathrm{BO}}$ 의 길이를 구하면?

① 3cm ②4cm ③ 5cm ④ 6cm ⑤ 7cm

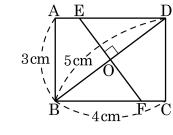
해설

 $\overline{\mathrm{AD}}\,/\!/\,\overline{\mathrm{BC}}$ 이므로 $\angle\mathrm{OAD}=\angle\mathrm{OMB}$ (엇각), $\angle\mathrm{ODA}=\angle\mathrm{OBM}$ (엇 따라서 △OAD ∽ △OMB 이다.

 $\overline{\mathrm{AD}}:\overline{\mathrm{BM}}=2:1$ 이므로 $\overline{\mathrm{DO}}:\overline{\mathrm{BO}}=2:1$ 이다.

 $\overline{\mathrm{BD}} = 3\overline{\mathrm{BO}} = 12$ $\therefore \overline{BO} = 4(cm)$

19. 다음 그림에서 직사각형ABCD 의 대각선 \overline{BD} 의 수직이등분선과 \overline{AD} , \overline{BC} 와의 교점을 각각 E, F 라 할 때, \overline{EF} 의 길이를 구하면?



- ① $\frac{10}{3}$ cm ② 4cm ③ $\frac{13}{4}$ cm ③ $\frac{9}{2}$ cm

△ABD 와 △OED 에서

∠ADB = ∠ODE, ∠A = ∠EOD = 90° 이므로 △ABD ∽△OED(AA 닮음)

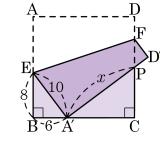
 $\overline{AB}:\overline{AD}=\overline{OE}:\overline{OD}$ 이므로 $3:4=\overline{OE}:rac{5}{2}$

 $\overline{\rm OE} = \frac{15}{8} \ (\, \rm cm)$

△OFB ≡ △OED이므로

 $\overline{\rm EF} = 2\overline{\rm OE} = \frac{15}{8} \times 2 = \frac{15}{4} \ (\,{\rm cm})$

 ${f 20}$. 다음 그림에서 정사각형 ${
m ABCD}$ 의 꼭짓점 ${
m A}$ 가 ${
m \overline{BC}}$ 위의 점 ${
m A}'$ 에 오도록 접었을 때, x 의 값은?



① 12 ② 13

3 14

⑤ 16

i) $\overline{EA'}=\overline{EA}=10$ 이므로 $\overline{AB}=10+8=18$ 이 되어 $\Box ABCD$

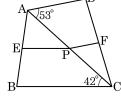
는 한 변의 길이가 18 인 정사각형이 된다. $\overline{A'C} = 18 - 6 = 12$ ii) $\angle BEA' + \angle BA'E = \angle BA'E + \angle PA'C = 90$ ° 이므로 $\angle BEA' =$

 $\angle PA'C \cdots \bigcirc$ $\angle B = \angle C = 90^{\circ} \cdots \bigcirc$ ⑤, ⓒ에 의해 △EBA′ ♡△A′CP

따라서 $\overline{\mathrm{EB}}:\overline{\mathrm{A'C}}=\overline{\mathrm{EA'}}:\overline{\mathrm{A'P}}$

8:12=10:x $\therefore x = 15$

21. 다음 그림에서 \overline{AE} : $\overline{EB} = \overline{AP}$: $\overline{PC} = \overline{DF}$: \overline{FC} 이다. $\angle DAC = 53^\circ$, $\angle ACB = 42^\circ$ 일 때, $\angle APF$ 와 $\angle EPC$ 의 크기의 차를 구하여라.



 ► 답:

 ▷ 정답:
 11°

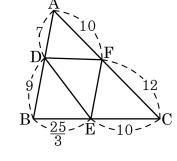
 $\overline{\mathrm{EP}}$ // $\overline{\mathrm{BC}}$ 이므로 $\angle\mathrm{APE} = \angle\mathrm{ACB} = 42\,^\circ$

 $\angle EPC = 180\degree - 42\degree = 138\degree$ \overline{AD} // \overline{PF} 이므로 $\angle FPC = \angle DAC = 53\degree$

 $\therefore \angle EPC - \angle APF = 138^{\circ} - 127^{\circ} = 11^{\circ}$

 $\angle APF = 180^{\circ} - 53^{\circ} = 127^{\circ}$

22. 다음 그림에서 $\overline{\rm DE}$, $\overline{\rm EF}$, $\overline{\rm FD}$ 중에서 $\Delta {\rm ABC}$ 의 변에 평행한 선분의 길이를 구하여라.



답:

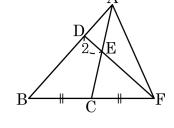
ightharpoonup 정답: $rac{96}{11}$

 $12:10=10:rac{25}{3}$ 이므로 $\overline{
m FE}$ // $\overline{
m AB}$

 $\overline{\text{CF}} : \overline{\text{CA}} = \overline{\text{FE}} : \overline{\text{AB}}$ $12 : 22 = \overline{\text{FE}} : 16$ $22\overline{\text{FE}} = 192$

 $\therefore \overline{FE} = \frac{96}{11}$

23. 다음 그림에서 \overline{BD} : $\overline{DA}=2$: 1 이고 $\overline{BC}=\overline{CF}$ 일 때, \overline{EF} 의 길이를 구하시오.



답:

▷ 정답: 6

하면 $\triangle AGC$ 에서 $\overline{DE} // \overline{GC}$, $\overline{AD} = \overline{DG}$ 이므로 삼각형의 중점연결

정리의 역에 의해

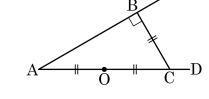
 $\therefore \overline{GC} = 2 \times \overline{DE} = 4$ ΔBDF 에서 $\overline{BC} = \overline{CF}$, $\overline{CG} /\!\!/ \overline{DF}$ 이므로 삼각형의 중점연결정

리의 역에 의해 $\overline{BG}=\overline{GD}\ , \ \overline{CG}=\frac{1}{2}\overline{DF}$

따라서 $\overline{\mathrm{DF}} = 2 \times 4 = 8$ 이므로

 $\overline{\mathrm{EF}} = 8 - 2 = 6$ 이다.

 ${f 24}$. 다음 그림에서 점 O는 ${\it \angle B}=90^{\circ}$ 인 직각삼각형 ABC의 빗변의 중점 이다. $\overline{OA} = \overline{BC}$ 일 때, $\frac{\angle BCD}{\angle BAO}$ 의 값을 구하여라.



▶ 답: ▷ 정답: 4

직각삼각형 빗변 $\overline{\mathrm{AC}}$ 의 중점 O는 $\Delta\mathrm{ABC}$ 의 외심이다.

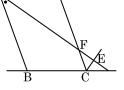
 $\therefore \overline{\mathrm{OA}} = \overline{\mathrm{BC}}, \overline{\mathrm{OB}} = \overline{\mathrm{OC}}$ 이므로 $\Delta \mathrm{BOC}$ 는 정삼각형이다. 따라서 ∠BCO = ∠BOC = ∠OBC = 60° $\angle BCD = 180^{\circ} - \angle BCO = 180^{\circ} - 60^{\circ} = 120^{\circ} \cdots \bigcirc$

 $\angle AOB = 180^{\circ} - \angle BOC = 180^{\circ} - 60^{\circ} = 120^{\circ}$ $\overline{\mathrm{OA}} = \overline{\mathrm{OB}}$ 이므로 $\Delta \mathrm{BAO}$ 는 이등변삼각형

 $\angle BAO = \angle ABO = 30^{\circ} \cdots \bigcirc$

⑦, ⓒ에 의해 $\frac{\angle BCD}{\angle BAO} = \frac{120^\circ}{30^\circ} = 4$

25. 다음 그림과 같은 평행사변형 ABCD 에서 ∠A 의 내각의 이등분선과 ∠C 의 외각의 이 등분선의 교점을 E 라고 할 때, ∠AEC = ()°이다. ()안에 알맞은 수를 구하여라.



▶ 답: ▷ 정답: 90

해설

 $\angle BAE = a$

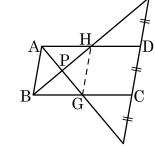
 $\angle DCE = b$ 라 하면 $\angle \mathbf{B} = 2b$ 이고

 $\angle A + \angle B = 180$ ° 이므로

 $a+b=90^{\circ}$ $\overline{\mathrm{AB}} /\!/ \overline{\mathrm{CD}}$ 이므로 $\angle \mathrm{BAF} = \angle \mathrm{CFE} = a$

 $\therefore \angle AEC = 180^{\circ} - (a+b) = 90^{\circ}$

26. 다음 그림에서 $\square ABCD$ 는 평행사변형이고 $2\overline{AB} = \overline{AD} = 6$ 이다. $\overline{\mathrm{FD}} = \overline{\mathrm{DC}} = \overline{\mathrm{CE}}$ 일 때, $\Box \mathrm{ABGH}$ 의 둘레의 길이를 구하면?



③ 14 **2**12 ① 10 **4** 16 **5** 18

 $\overline{AB} = \overline{CD} = \overline{DF}$ $\angle ABH = \angle HFD()$ 文각)

해설

 $\angle BAH = \angle HDF()$ 이므로

 $\triangle ABH \equiv \triangle DFH (ASA 합동)$

따라서 $\overline{\mathrm{AH}} = \overline{\mathrm{HD}} = 3$ 이다.

마찬가지로 $\triangle ABG \equiv \triangle ECG$ 에서 $\overline{BG} = 3$ 이므로 □ABGH는 마름모이다.

따라서 둘레의 길이는 $3 \times 4 = 12$ 이다.

27. 다음 보기와 같이 대각선의 성질과 사각형을 옳게 짝지은 것은? 보기

- ⊙ 두 대각선은 서로 다른 것을 이등분한다.
- © 두 대각선의 길이가 같다.
- © 두 대각선은 서로 수직으로 만난다.
- ② 두 대각선이 내각을 이등분한다.

③마름모: ¬, ©, @ ④ 직사각형: ¬, ©, ©

⑤ 정사각형 : ᄀ, ఁ, ㄹ

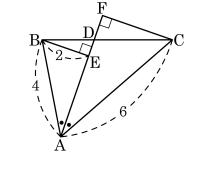
① 등변사다리꼴 : ①, ② 평행사변형 : ①, ②

① 등변사다리꼴 : ①

② 평행사변형: 🕤 ④ 직사각형 : ᄀ, ∟

⑤ 정사각형 : ①, ⓒ, ⓒ, ②

 ${f 28}$. 다음 그림과 같은 ΔABC 에서 \overline{AD} 는 $\angle A$ 의 이등분선이고 점 $B,\ C$ 에서 $\overline{\mathrm{AD}}$ 또는 그 연장선 위에 내린 수선의 발을 각각 E, F 라고 할 때, $\overline{\mathrm{CF}}$ 의 길이는?



해설

① 2

②3

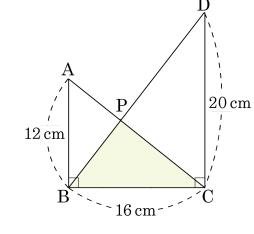
3 4

4 5 **5 6**

ΔABE와 ΔACF는 닮음이다.

 $\therefore \ 4:2=6:\overline{\mathrm{CF}}$ $\therefore \overline{CF} = 3$

29. 다음 그림에서 $\angle B = \angle C = 90^{\circ}$ 일 때, $\triangle PBC$ 의 넓이는?



- $4 50 \text{cm}^2$
- \bigcirc 60cm^2

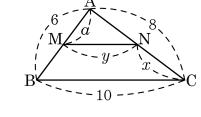
 \bigcirc 30cm^2

- $3 40 \text{cm}^2$

점 P 에서 \overline{BC} 에 내린 수선의 발을 H라 하면 $\overline{AB}//\overline{PH}//\overline{DC}$ 이므로 $\overline{PH} = \frac{\overline{AB} \times \overline{DC}}{\overline{AB} + \overline{DC}} = \frac{12 \times 20}{12 + 20} = \frac{15}{2} \text{(cm)} \text{ 이다.}$ $\therefore \Delta PBC = \frac{1}{2} \times \overline{PH} \times \overline{BC} = \frac{1}{2} \times \frac{15}{2} \times 16 = 60 \text{(cm}^2)$

$$\therefore \text{ APBC} = \frac{1}{2} \times \text{PH} \times \text{BC} = \frac{1}{2} \times \frac{1}{2} \times 10 = 60 \text{(cr)}$$

30. 다음 그림의 $\triangle ABC$ 에서 $\overline{AB}, \ \overline{AC}$ 의 중점이 각각 M, N이고, a=3이라고 할 때, 식의 값이 나머지와 <u>다른</u> 것은?



- ① y-a ② $\frac{8-x}{2}$ ③ $\frac{8-a}{3}$ ③ $\frac{2}{3}(8-y)$
- $\Im 2(x-a)$

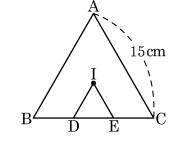
- \overline{AB} , \overline{AC} 의 중점이 M, N 이므로

 $y = \frac{1}{2} \times 10 = 5$, $x = \frac{1}{2} \times 8 = 4$ 이다.

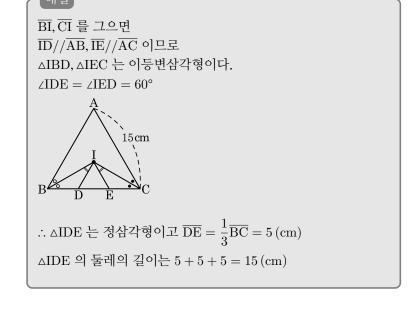
①
$$y - a = 5 - 3 = 2$$

② $\frac{8 - x}{2} = \frac{8 - 4}{2} = 2$
③ $2(x - a) = 2(4 - 3) = 2$
④ $\frac{8 - a}{3} = \frac{8 - 3}{3} = \frac{5}{3}$

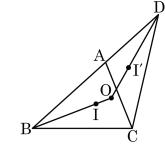
31. 다음 그림에서 점 I 는 정삼각형 \triangle ABC 의 내심이다. $\overline{\text{ID}}//\overline{\text{AB}}, \overline{\text{IE}}//\overline{\text{AC}}$ 이고, $\overline{\text{AC}}=15\text{cm}$ 일 때, \triangle IDE 의 둘레의 길이를 구하여라.



▶ 답: $\underline{\mathrm{cm}}$ ▷ 정답: 15<u>cm</u>



32. $\angle BAC = 70^{\circ}$, $\angle ABC = 42^{\circ}$, $\overline{AC} = \overline{AD}$ 이고 점I, I' 는 각각 $\triangle ABC$, $\triangle ACD$ 의 내심이다. 점 $O \leftarrow \overline{BI}$ 와 $\overline{DI'}$ 의 연장선의 교점 일 때, ∠IOI′의 크기를 구하여라.



4 131.5 °

① 147.5°

- ② 148.5° ⑤ 141.5°
- ③ 149.5°

$\overline{\mathrm{AC}} = \overline{\mathrm{AD}}$ 이므로

 $\angle ADC = \frac{1}{2} \angle BAC = \frac{1}{2} \times 70^{\circ} = 35^{\circ}$

절 I는 내심이므로 ∠ABI = 42°×
$$\frac{1}{2}$$
 = 21°

점 I'는 내심이므로 $\angle \mathrm{ADI'} = 35\,^{\circ} \times \frac{1}{2} = 17.5\,^{\circ}$

 $\therefore \angle IOI' = 180^{\circ} - (21^{\circ} + 17.5^{\circ}) = 141.5^{\circ}$

33. 다음 그림에서 $\angle FDA = \angle FCE = 90^\circ$, $\overline{AB} = 15$, $\overline{EB} = 18$, $\overline{\mathrm{BC}}:\overline{\mathrm{CE}}=5:4$ 일 때, $\overline{\mathrm{AD}}$ 의 길이를 구하여라.

▶ 답: ▷ 정답: 3

 $\triangle ABC$ 와 $\triangle EBD$ 에서 조건에 의하여

 $\angle FDA = \angle FCE = 90^{\circ}$, $\angle B$ 는 공통이므로 $\triangle ABC \circ \triangle EBD$ (AA 닮음)

 $\overline{AB}:\overline{EB}=\overline{BC}:\overline{BD},\ \overline{BC}:\overline{CE}=5:4$ 이므로.: $\overline{BD}=12$ $\overline{\mathrm{BC}} = 10$

 $15:18 = 10:\overline{\mathrm{BD}}$

따라서 $\overline{AD}=\overline{AB}-\overline{BD}=15-12=3$ 이므로 $\overline{AD}=3$ 이다.