
1. 다음은 '평행사변형에서 두 쌍의 대변의 길이는 각각 같다.' 를 증명한 것이다. ΔABD와 ΔCDB의 합동 조건은?

평행사변형 ABCD에 점 B와 점 D를 이으면 ΔABD와 ΔCDB 에서

∠ABD = ∠CDB (엇각) ··· ⑤ ∠ADB = ∠CBD (엇각) ··· ©

BD 는 공통 · · · ©

 \bigcirc , \bigcirc , \bigcirc 에 의해서 $\triangle ABD \equiv \triangle CDB$ 이다. $\therefore \overline{AB} = \overline{CD}, \overline{AD} = \overline{BC}$

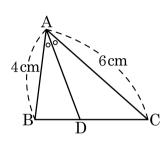
- ① SSS 합동
- ② SAS 합동
- ASA 합동

- ④ SSA 합동
- ⑤ AAS 합동

해설

△ABD와 △CDB에서

∠ABD = ∠CDB (엇각), ∠ADB = ∠CBD (엇각), BD는 공통이


ㅁ루 △ABD ≡ △CDB (ASA 합동)이다.

$$\angle A = 180^{\circ} \times \frac{4}{9} = 80^{\circ}$$

$$\angle C = \angle A = 80^{\circ}$$

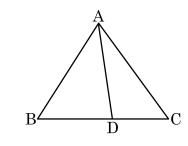
$$\therefore \angle A + \angle C = 80^{\circ} + 80^{\circ} = 160^{\circ}$$

3. 다음 그림에서 $\overline{\rm AD}$ 는 ∠A 의 이등분선이다. $\triangle \rm ABD$ 의 넓이는 $12 {\rm cm}^2$ 이다. $\triangle \rm ACD$ 의 넓이는?

 $18 \mathrm{cm}^2$

 20cm^2

 $3 21 \text{cm}^2$


4 24cm²

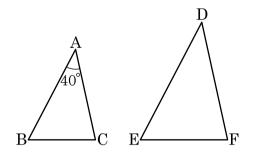
 \bigcirc 27cm²

 $4:6=12:\triangle ACD$

 $\therefore \triangle ACD = 18cm^2$

1. 다음 그림과 같은 $\triangle ABC$ 의 넓이가 $70 cm^2$ 이고 $\overline{BD}:\overline{DC}=4:3$ 일 때, $\triangle ADC$ 의 넓이는?

$$20 \text{cm}^2$$

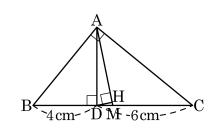

$$3 25 \text{cm}^2$$

$$430 \text{cm}^2$$

$$\bigcirc$$
 35cm²

해설
$$\triangle ADC 의 넓이는 = 70 \times \frac{3}{4+3} = 30 (cm^2)$$

5. 다음 그림에서 $\triangle ABC \bigcirc \triangle DEF$ 일 때, $\angle E + \angle F$ 의 크기는?


①
$$70^{\circ}$$
 ② 80° ③ 120° ④ 140° ⑤ 145°

해설

두 삼각형이 닮음이므로 대응각인 $\angle A = \angle D$ 이다. 삼각형의 세 내각의 합은 180° 이므로 $\angle D + \angle E + \angle F = 180^\circ$

 $\therefore \angle E + \angle F = 180^{\circ} - 40^{\circ} = 140^{\circ}$

6. 직각삼각형 ABC 에서 점 M 은 \overline{BC} 의 중점이다. 이때, \overline{MH} 의 길이는?

- $\frac{1}{5}$ cm
 - $\frac{16}{5}$ cm

 $3\frac{12}{5}$ cm

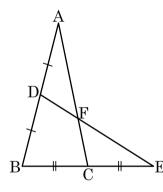
점 M 은
$$\overline{BC}$$
 의 중점이므로

점 M 은 BC 의 중점이므로 $\overline{BM} = \overline{MC} = \overline{AM} = 5 \text{ (cm)}$

따라서 $\overline{\rm DM}=1\,{
m cm}$ 이고 $\overline{\rm DM}^2=\overline{\rm MH} imes\overline{\rm MA}$

 $\stackrel{\sim}{\lnot}$, $1^2 = \overline{\text{MH}} \times 5$ $\therefore \overline{\text{MH}} = \frac{1}{5} \text{ (cm)}$

7. 다음 그림에서 $\overline{AD}//\overline{MN}//\overline{BC}$ 이고, $\overline{AB}:\overline{AM}=2:1,\ \overline{MP}=5$ 일 때, 2y-x 의 값은?


$$x = \overline{BC} = 2\overline{MP} = 10$$

$$y = \overline{MN} = \frac{1}{2}(\overline{AD} + \overline{BC}) = \frac{25}{2}$$

$$\therefore 2y - x = 2 \times \frac{25}{2} - 10 = 15$$

해설

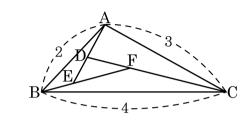
8. 다음 그림과 같은 $\triangle ABC$ 에서 \overline{BC} 의 연장선 위에 $\overline{BC} = \overline{CE}$ 인 점 E 를 잡고 \overline{AB} 의 중점 D 와 연결하였다. \overline{DE} 와 \overline{AC} 의 교점을 F 라 할 때. $\triangle ADF = 10 \text{ cm}^2$ 이면 $\triangle DBE$ 의 넓이는?

① $10 \, \text{cm}^2$

② $20 \, \text{cm}^2$

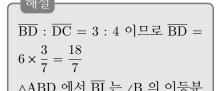
 $30\,\mathrm{cm}^2$

 $40 \, \text{cm}^2$ $50 \, \text{cm}^2$

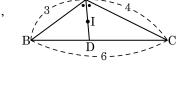

점 A, E 를 이으면 점 F 는 △ABE 의 무게중심이므로 $\triangle DBE = 3\triangle ADF = 3 \times 10 = 30 \text{ (cm}^2\text{)}$

9. 닮음비가 4:5인 두 정사각형이 있다. 이 두 정사각형의 둘레의 합이 72cm일 때, 작은 정사각형의 한 변의 길이를 acm, 큰 정사각형의 한 변의 길이를 bcm라고 하자. a+b의 값은?

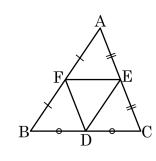
① 8 ② 10 ③ 18 ④ 32 ⑤ 40


해설
두 정사각형의 둘레의 합이 72cm 이므로 작은 정사각형의 둘레
는
$$72 \times \frac{4}{9} = 32$$
 (cm), 큰 정사각형의 둘레는 $72 \times \frac{5}{9} = 40$ (cm)
이다. 따라서 한 변의 길이는 각각 $a = 8$, $b = 10$ 이다.

10. 다음 그림과 같은 $\triangle ABC$ 에서 $\overline{AB}=2$, $\overline{BC}=4$, $\overline{CA}=3$ 이고, $\angle BAE=\angle CBF=\angle ACD$ 일 때, $\overline{DE}:\overline{EF}$ 는?


$$\angle DAC = x$$
, $\angle FCB = y$, $\angle EBA = z$ 라 하면,
 $\angle EDF = x + \angle ACD = x + \angle BAE = \angle A$
 $\angle DFE = y + \angle CBF = y + \angle ACD = \angle C$
 $\angle FED = z + \angle BAE = z + \angle CBF = \angle B$
 $\therefore \triangle ABC \bigcirc \triangle DEF$ 이므로 $\overline{DE} : \overline{EF} = \overline{AB} : \overline{BC} = 1 : 2$

11. 다음 그림에서 점 I는 내심이다. $\overline{AB}=3$, $\overline{AC}=4$, $\overline{BC}=6$ 일 때,



 $\triangle ABD$ 에서 \overline{BI} 는 $\angle B$ 의 이등분 선이므로 \overline{AI} : \overline{ID} = \overline{BA} : \overline{BD} =

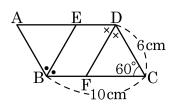
$$3:\frac{18}{7}=7:6$$

12. 다음 그림에서 점 D, E, F 는 각각 \overline{BC} , \overline{CA} , \overline{AB} 의 중점이다. ΔDEF 의 넓이가 $3cm^2$ 일 때, ΔABC 의 넓이는?

$$12 \text{cm}^2$$

$$2 13 \text{cm}^2$$

$$cm^2$$
 3 14cm²


$$4 15 \text{cm}^2$$

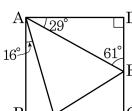
$$\Im 16 \text{cm}^2$$

의 넓이는

의 넓이는 $4 \times \Delta DEF = 4 \times 3 = 12(\text{cm}^2)$ 이다.

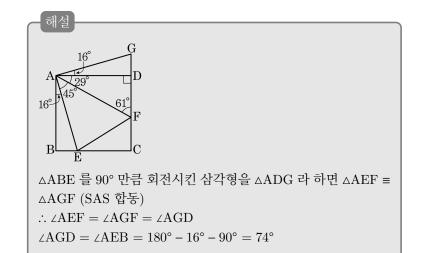
13. 다음 그림과 같은 평행사변형 ABCD에서 ∠B와 ∠D의 이등분선이 AD, BC와 만나는 점을 각 각 E, F라 하고, BC = 10cm, DC = 6cm, ∠C = 60°일 때, □BFDE의 둘레의 길이는?

① 16cm ② 18cm ③ 20cm ④ 22cm ⑤ 24cm

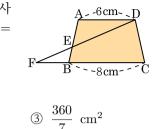

$$\angle EBF = \frac{1}{2} \angle B = \frac{1}{2} \angle D = \angle EDF \cdots \bigcirc$$

∠DEB = 180° – ∠EBF = 180° – ∠EDF = ∠BFD ··· ⓒ ⑤, ⓒ에서 □EBFD는 두 쌍의 대각의 크기가 각각 같으므로

| 평행사변형이다. | ∠EDF = ∠DFC (∵엇각)이므로 ΔCDF는 이등변삼각형이고, 세 | 각이 모두 60°이므로 정삼각형이다.


$$\therefore \overline{FC} = \overline{DC} = \overline{DF} = \overline{EB} = 6(cm)$$
$$\therefore \overline{DE} = \overline{BF} = \overline{BC} - \overline{FC} = 10 - 6 = 4(cm)$$

14. 다음 그림과 같이 정사각형 ABCD 의 변 BC 와 변 CD 위에 $\angle BAE =$ 16° , $\angle DAF = 29^{\circ}$ 가 되도록 점 E , F 를 잡을 때, $\angle AEF = (\)^{\circ}$ 이다. () 안에 들어갈 알맞은 수를 구하여라.



В

② 72 ③ 70 (4) 68 (5) 66

15. 다음 그림에서 $\Box ABCD \vdash \overline{AD} // \overline{BC}$ 인 사 다리꼴이다. $\overline{AE} : \overline{EB} = 7 : 4. \triangle AED =$ 21 cm² 일 때, △DFC 의 넓이를 구하면?

①
$$\frac{400}{7}$$
 cm² ② $\frac{320}{7}$ cm²
④ $\frac{400}{7}$ cm² ⑤ $\frac{440}{7}$ cm²

점 E 를 지나고
$$\overline{AD}$$
, \overline{BC} 의 연장선에 수직'하면 \overline{AE} : \overline{EB} = 7 : 4 이므로 \overline{AD} : \overline{FB} = $\frac{24}{7}$ (cm)
$$\Delta AED = \frac{1}{2} \times 6 \times \overline{GE} = 21 \text{ (cm}^2) \text{ 이므로}$$
 \overline{GE} = 7 (cm), \overline{GH} = 11 (cm)

BH --8cm---

$$\therefore \Delta DFC = \frac{1}{2} \times \left(\frac{24}{7} + 8\right) \times 11$$

$$= \left(\frac{12}{7} + \frac{28}{7}\right) \times 11$$

$$= \frac{440}{7} (cm^2)$$