
1. 다음 그림에서 작은 원기둥은 큰 원기둥을 $\frac{2}{3}$ 로 축소한 것이다. 작은 원기둥의 옆면의 넓이는?

- ① $56\pi \text{ cm}^2$ ② $78\pi \text{ cm}^2$ $4 \ 108\pi \ \mathrm{cm}^2$ $5 \ 126\pi \ \mathrm{cm}^2$
- $396\pi \text{ cm}^2$

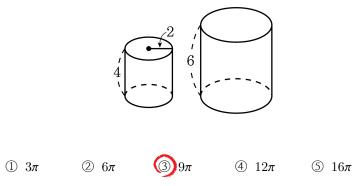
작은 원기둥의 밑면의 반지름의 길이를 r , 높이를 h 라고 하면 $r=6 imes \frac{2}{3}=4({
m cm})$, $h=18 imes \frac{2}{3}=12({
m cm})$ (옆면의 넓이)= $2\pi rh=96\pi({
m cm}^2)$

2. 다음 그림의 두 원뿔은 닮은 도형이다. xy의 값은?

① 100

②130

③ 150

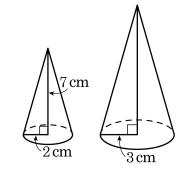

4 200

⑤ 210

닮음비가 1:2이므로 x=13, y=10이다.

해설

3. 다음 그림에서 두 원기둥이 서로 닮은 도형일 때, 큰 원기둥의 밑면의 넓이는?



해설

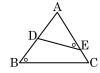
두 원기둥의 닮음비는 4:6=2:3이므로 큰 원기둥의 반지름의

길이를 r이라 하면 2:3=2:r, 2r=6, r=3이 된다. 따라서 큰 원기둥의 밑면의 넓이는 $3 \times 3 \times \pi = 9\pi$ 이다.

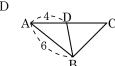
4. 다음 그림의 두 원뿔이 닮은 입체도형일 때, 큰 원뿔의 높이는?

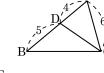
 $\bigcirc 3\frac{21}{2}$ cm $\bigcirc 3\frac{39}{4}$ cm

 $\bigcirc 5\,\mathrm{cm}$

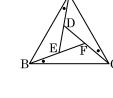

 \bigcirc 6 cm

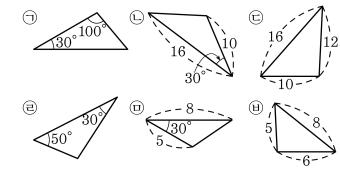
 $3 \frac{14}{3} \text{ cm}$


2h = 21 $\therefore h = \frac{21}{2}$


다음 각 도형에서 닮음인 두 삼각형을 기호로 바르게 나타낸 것은? **5.**

① $\triangle ABC \hookrightarrow \triangle ADE(\angle B = \angle E)$


② △ABD ∽ △BCD

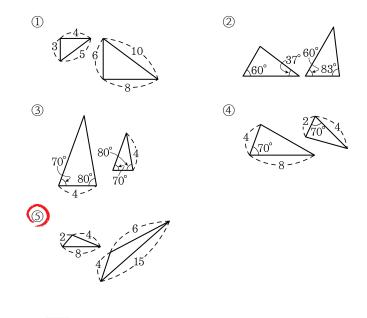


 $\textcircled{\scriptsize \triangle} \triangle ABC \circlearrowleft \triangle DEF(\angle BAE = \angle FBC = \angle DCA)$

 $\angle ABC = \angle DEF, \angle BAC = \angle EDF, \angle ACB = \angle DFE$ 이므로 $\triangle ABC \hookrightarrow \triangle DEF(AA 닮음)$ 이다.

6. 다음 삼각형 중에서 닮은 도형끼리 짝지은 것은?

① ① 과 ② ④ ② 과 ①

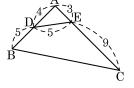

② Q과 @ ③ @과 B ③ □과 □

해설

① ③과 @에서 각의 크기가 각각 100°,30°,50° 이므로 대응하

는 각의 크기가 각각 같은 AA 닮음이다.

7. 다음 짝지어진 도형 중 서로 닮음이 <u>아닌</u> 것은?

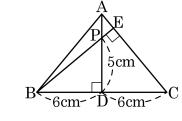


① SSS 닮음

- ② AA 닮음 ③ AA 닮음
- ④ SAS 닮음

8. 다음 그림에서 옳은 것은 무엇인가?

- ① ΔABC ∽ ΔAED(SSS닭음)
- $\ \, \overline{BC}=10\,\mathrm{cm}$
- ④ ∠AED 의 대응각은 ∠ACB ⑤ \overline{AE} 의 대응변은 \overline{AC}



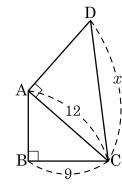
△ABC와 △AED에서

 $\angle A$ 는 공통, $\overline{AB} : \overline{AE} = \overline{AC} : \overline{AD} = 3 : 1$

∴ △ABC∽△AED (SAS 닮음) $\therefore \ \overline{\mathrm{AB}} : \overline{\mathrm{AE}} = \overline{\mathrm{BC}} : \overline{\mathrm{ED}}$

아래 그림과 같은 $\triangle ABC$ 에서 $\overline{AD} \bot \overline{BC}$, $\overline{AC} \bot \overline{BE}$ 이고, \overline{BE} 와 \overline{AD} 의 교점을 P 라고 한다. $\overline{BD} = \overline{DC} = 6 \mathrm{cm}$, $\overline{PD} = 5 \mathrm{cm}$ 일 때, \overline{AP} 의 9. 길이는?

- ① 1cm 4 2.2cm
- ② 1.8cm ⑤ 2.35cm
- ③ 2cm


△BDP 와 △ADC 에서

 $\angle PBD = \angle CAD$, $\angle PDB = \angle CDA = 90^{\circ}$ 이므로 △BDP ∽ △ADC (AA 닮음)

 $\overline{\mathrm{BD}}:\overline{\mathrm{PD}}=\overline{\mathrm{AD}}:\overline{\mathrm{CD}}$ 이므로 $6:5=\overline{\mathrm{AD}}:6$

 $\overline{AD} = \frac{36}{5}$ $\therefore \overline{AP} = \frac{36}{5} - 5 = \frac{11}{5} = 2.2 \text{ (cm)}$

10. 다음 그림에서 $\angle B = \angle DAC = 90^\circ$, $\angle ACB = \angle DCA$ 이다. 이 때, x 의 값은?

① 15

②16

③ 17

4 18

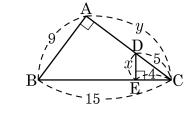
⑤ 19

 \triangle ABC 와 \triangle DAC 에서 \angle B = \angle DAC,

해설

 $\angle ACB = \angle DCA$, $\angle ABC = \angle DAC$ 이므로 $\triangle ABC \hookrightarrow \triangle DAC$ (AA 닮음) $\overline{AC} : \overline{DC} = \overline{BC} : \overline{AC}$ 이므로 12 : x = 9 : 129x = 144 $\therefore x = 16$

11. 다음 그림에서 x 의 값은?


① $\frac{1}{2}$ ② $\frac{3}{2}$ ③ $\frac{5}{2}$

⑤ 4

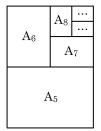
 $\triangle ABC$ 와 $\triangle AED$ 에서 $\angle A$ 는 공통, $\angle ACB = \angle ADE = 90^{\circ}$ 이므로 △ABC∽△AED (AA 닮음) $\overline{\mathrm{AC}}:\overline{\mathrm{AD}}=\overline{\mathrm{BC}}:\overline{\mathrm{ED}}$ (5+x):4=6:3 $3\left(5+x\right)=24$

 $5 + x = 8 \qquad \therefore x = 3$

12. 다음 그림에서 x + y 의 값은?

15

② 16 ③ 17

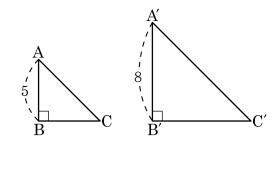

④ 18

⑤ 19

△DEC 와 △ABC 에서 ∠C는 공통,

 $\angle A = \angle DEC$ 이므로 $\triangle DEC$ $\bigcirc \triangle BAC$ $\overline{\mathrm{EC}}:\overline{\mathrm{CD}}=\overline{\mathrm{AC}}:\overline{\mathrm{BC}},\,4:5=y:15$ 이므로 y=12또한, $\overline{\mathrm{DE}}:\overline{\mathrm{BA}}=\overline{\mathrm{EC}}:\overline{\mathrm{AC}},\,x:9=4:12$ $x = 3 \qquad \therefore \ x + y = 15$

13. A_4 용지를 다음 그림과 같이 반씩 접어보고, 접을 때마다 종이의 크기를 각각 $A_5, A_6, A_7 \cdots$ 이라고 할 때, A_6 용지의 가로와 세로의 길이는?(단 A_4 용지의 가로의 길이는 $210 \mathrm{mm}$, 세로의 길이는 $297 \mathrm{mm}$ 이다)


② 가로: 210 mm, || = 120 mm② 가로: 210 mm, || = 120 mm③ 가로: 105 mm, || = 120 mm④ 가로: 105 mm, || = 120 mm④ 가로: 105 mm, || = 120 mm⑤ 가로: 105 mm, || = 120 mm⑤ 가로: 105 mm, || = 120 mm

① 가로: 210 mm, 세로: 297 mm

해설 종이를 계속 반으로 접을 때마다 종이의 가로와 세로의 길이는 $A_4:210,297$, $A_5:210,\frac{297}{2},A_6:\frac{210}{2},\frac{297}{2},A_7:\frac{210}{2},\frac{297}{4}\cdots$

로 줄어든다. 따라서 $A_6\left(105,\frac{297}{2}\right)$ 이다.

 ${f 14}$. 다음 직각이등변 삼각형 ΔABC , $\Delta A'B'C'$ 이 닮음일 때, 둘레의 길이의 비는?

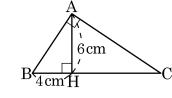
⑤ 8:5

45:8

① 1:2 ② 1:3 ③ 4:5

 $\overline{\mathrm{AB}}$: $\overline{\mathrm{A'B'}}=5$: 8이므로 둘레의 길이의 비는 5 : 8이다.

해설


15. △ABC ∽△DEF 이고, 닮음비가 7 : 4일 때, △DEF 의 둘레의 길이가 24cm 라고 한다. 이 때, △ABC의 둘레의 길이는?

① 14cm ② 28cm ③ 35cm ④ 42cm ⑤ 56cm

 $\triangle ABC$ 의 둘레의 길이를 x cm라 하면 닮음비가 7:4이므로

7: 4 = x: 24 $\therefore x = 42$

16. $\angle A$ 가 직각인 $\triangle ABC$ 에서 $\overline{AH} \bot \overline{BC}$ 일 때, $\triangle AHC$ 의 넓이를 구하면?

- ① 18cm² ④ 40cm²
- $27cm^{2}$ $42cm^{2}$
- 36cm^2
- 9 42cm

 $\overline{AH^2} = \overline{BH} \cdot \overline{CH}$ $36 = 4 \times \overline{CH} , \overline{CH} = 9(cm)$

 \therefore (\triangle AHC 의 넓이)= $\frac{1}{2} \times 9 \times 6 = 27 (cm^2)$

2

- 17. 다음 그림은 정삼각형 ABC 의 꼭짓점 A 가 변BC 위의 점 E 에 오도록 접은 것이다. $\overline{AF}=7\mathrm{cm}, \ \overline{BE}=4\mathrm{cm}, \ \overline{AC}=12\mathrm{cm}$ 일 때, \overline{BD} 와 \overline{AD} 의 길이의 차는?
 - 7cm, 12cm

① 12cm

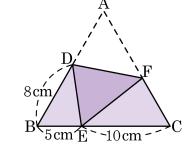
- ⑤ 0cm

 $\bigcirc \frac{4}{5}$ cm

- $3\frac{32}{5}$ cm
- 다음 그림의 △BED 와 △CFE 에서
- $\angle B = \angle C = 60^{\circ} \cdots \bigcirc$ $\angle BED + \angle BDE = 120^{\circ}$

 $\angle {\rm BED} = \angle {\rm CFE}$

- $\angle BED + \angle CEF = 120^{\circ} \; (\because \angle DEF = \angle A = 60^{\circ} \;)$
- $\therefore \angle BDE = \angle CEF \cdots \bigcirc$


 $\overline{\rm AF}=\overline{\rm EF}=7\;(\,{\rm cm})$

 $\overline{FC} = 12 - 7 = 5$ (cm) $\overline{BE} : \overline{CF} = \overline{DE} : \overline{EF}$ 이므로 4 : 5 = x : 7

⑤, ⓒ에서 △BED♡△CFE

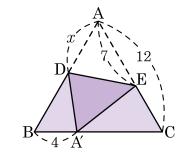
- 5x = 28 $\therefore x = \frac{28}{5}$ $\overline{BD} = 12 \frac{28}{5} = \frac{32}{5} \text{ (cm)}, \overline{AD} = \frac{28}{5} \text{ (cm)}$
- 따라서 $\overline{\rm BD}$ 와 $\overline{\rm AD}$ 의 길이의 차는 $\frac{32}{5}-\frac{28}{5}=\frac{4}{5}$ 이다.

 ${f 18}$. 다음 그림과 같이 정삼각형 ABC 의 꼭짓점 A 가 변 BC 위의 점 E 에 오도록 접었다. $\overline{BD}=8\mathrm{cm}$, $\overline{BE}=5\mathrm{cm}$, $\overline{EC}=10\mathrm{cm}$ 일 때, \overline{AF} 의 길이는?

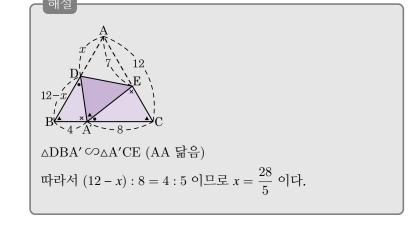
① 8cm $4 \frac{25}{4}$ cm $2 \frac{35}{4} \text{cm}$

3 7cm

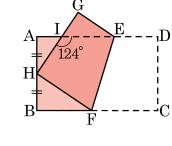
 $\angle A = \angle B = \angle C = \angle DEF = 60\,^\circ$ $\angle \mathrm{BDE} = \angle \mathrm{CEF}$ $\triangle BDE$ $\hookrightarrow \triangle CEF$ (AA 닮음)


 $\overline{\mathrm{BD}}:\overline{\mathrm{CE}}=8:10=4:5$

 ΔABC 가 정삼각형이므로 $\overline{AB}=\overline{BC}=\overline{CA}$ 이고, 한 변의 길이


는 15cm 이다. 따라서, $\overline{AD}=\overline{DE}=7\mathrm{cm}$, $4:5=7:\overline{EF}$

 $\therefore \overline{\mathrm{EF}} = \overline{\mathrm{AF}} = \frac{35}{4}\mathrm{cm}$


19. 다음 그림과 같이 정삼각형 모양의 종이 $\triangle ABC$ 를 꼭짓점 A 가 \overline{BC} 의 점 A' 에 오도록 접었을 때, x 의 값을 구하여라.

- ① $\frac{11}{5}$ ② $\frac{21}{25}$ ③ $\frac{26}{5}$ ④ $\frac{28}{5}$ ⑤ $\frac{29}{2}$

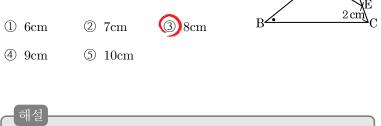
 ${f 20}$. 다음 그림은 직사각형 ABCD 의 꼭짓점 C 가 변 AB 의 중점 H 에 오도록 $\overline{\mathrm{EF}}$ 를 접는 선으로 하여 접은 것이다. $\angle\mathrm{HIE}=124^\circ$ 일 때, ∠HFE 의 크기는?

① 34° ② 48° ③ 56°

④ 62°

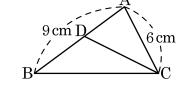
∠HIE = 124° 이므로 ∠AIH = 56° 이다.


해설


 $\angle A=90^\circ$, $\angle AIH=56^\circ$ 이므로 $\angle AHI=34^\circ$ 이다.

 $\angle \mathrm{GHF} = \angle \mathrm{C} = 90^\circ$ 이므로 $\angle \mathrm{BHF} = 56^\circ$ 이코 $\angle \mathrm{BFH} = 34^\circ$

이다. 따라서 $x = \angle \text{HFE} = \angle \text{EFC} = \frac{(180^{\circ} - 34^{\circ})}{2} = 73^{\circ}$


21. 다음 그림에서 $\angle AED = \angle ABC$, $\overline{AD} =$ $4 \mathrm{cm}, \ \overline{\mathrm{AE}} = 6 \mathrm{cm}, \ \overline{\mathrm{EC}} = 2 \mathrm{cm}$ 일 때, $\overline{\mathrm{BD}}$ 의 길이를 구하면?

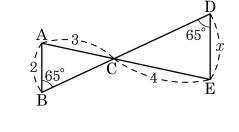
 $\triangle ABC$ \hookrightarrow $\triangle AED$ 의 닮음비가 2:1 이므로 $2:1=\overline{AB}:6$ $\overline{AB}=12(cm)$ x = 12 - 4 = 8(cm)

 ${f 22}$. 다음 그림에서 $\angle ACD = \angle ABC$, $\overline{AB} = 9 {
m cm}$, $\overline{AC} = 6 {
m cm}$ 일 때, \overline{AD} 의 길이는?

44cm

① 2.5cm

② 3cm


③ 3.2cm

⑤ 5cm

 $\angle A$ 는 공통, $\angle ACD = \angle ABC$ 이므로 $\triangle ABC$ $\bigcirc \triangle ACD$ (AA 닮

음)이다 $\overline{AB}:\overline{AC}=\overline{AC}:\overline{AD}$ $9:6=6:\overline{\mathrm{AD}}$, $9\overline{\mathrm{AD}}=36$ 이므로 $\overline{\mathrm{AD}}=4(\mathrm{cm})$ 이다.

23. 다음 그림에서 x의 값은 무엇인가?

① $\frac{5}{3}$ ② 2 ③ $\frac{7}{3}$ ④ $\frac{8}{3}$

△ABC와 △EDC에서 $\angle B = \angle D$, $\angle ACB = \angle ECD$

∴ △ABC ∽ △EDC (AA 닮음) $\overline{\mathrm{AB}}:\overline{\mathrm{ED}}=\overline{\mathrm{AC}}:\overline{\mathrm{EC}}$ 이므로 2:x=3:4

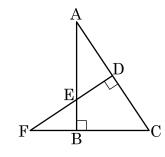
3x = 8

 $\therefore \ x = \frac{8}{3}$

24. 다음 그림에서 $\angle AED = \angle ABC, \ \overline{AD} = 4cm, \ \overline{AE} = 6cm, \ \overline{EC} = 2cm$ 일 때, x의 값은 ?

④ 9cm

38cm \bigcirc 7cm


 $\angle A$ 는 공통, $\angle AED = \angle ABC$ 이므로 $\triangle ABC \hookrightarrow \triangle AED$

 $\overline{\mathrm{AC}}:\overline{\mathrm{AD}}=\overline{\mathrm{AB}}:\overline{\mathrm{AE}}$ 8:4 = (x+4):6 $\therefore x = 8(\text{cm})$

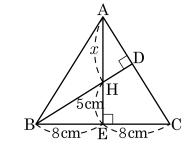
 \bigcirc 6cm

해설

25. 다음 그림에서 $\angle ABC = \angle FDC = 90^\circ$ 일 때, $\triangle ADE$ 와 닮은 삼각형이 <u>아닌</u> 것을 모두 고르면?

① AEBC ④ AFDC

② △ABC
③ △EDC


③ △FBE

해설

△ADE ∽ △ABC (AA 닮음)

△ABC ♡ △FDC ♡ △FBE (AA 닮음)

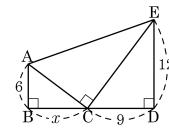
26. $\triangle ABC$ 에서 $\overline{BE} = \overline{CE} = 8 \mathrm{cm}, \ \overline{HE} = 5 \mathrm{cm}$ 일 때, x 의 길이는?

 $\ \, \textbf{4} \ \, \textbf{6cm}$

 \bigcirc 4cm

② 7.4cm ⑤7.8cm

③ 12.8cm


△HBE ∽ △CAE (AA 닮음)

 $\overline{\mathrm{HE}}:\overline{\mathrm{EB}}=\overline{\mathrm{CE}}:\overline{\mathrm{EA}}$ 5:8 = 8:(x+5)

5(x+5) = 645x = 39

 $\therefore x = 7.8(\text{cm})$

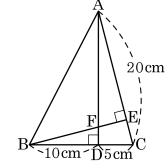
27. 다음 그림에서 $\overline{AB}=6$, $\overline{CD}=9$, $\overline{DE}=12$ 일 때, x 의 값은?

① 2 ② 4

3 6

⑤ 10

 $\angle BAC + \angle BCA = 90^{\circ}, \, \angle BCA + \angle ECD = 90^{\circ}$


해설

 $\angle ECD + \angle CED = 90^{\circ}$ 이므로 $\angle BCA = \angle CED$, $\angle BAC = \angle DCE$

∴ △ABC∽△CDE (AA 닮음) $\overline{\mathrm{AB}}:\overline{\mathrm{CD}}=6:9=2:3$ 이므로 x:12=2:3

 $\therefore x = 8$

28. △ABC 의 꼭짓점 A, B 에서 변 BC, CA 에 내린 수선의 발을 각각 D, E, BE 와 AD 의 교점을 F 라 할 때, CE 의 길이는?

- ① $\frac{15}{4}$ cm ② 4 cm ④ $\frac{9}{2}$ cm ⑤ $\frac{19}{4}$ cm
- $3 \frac{17}{4} \text{ cm}$

△BCE ∽ △ACD (AA 닮음) 이므로

 $\overline{BC} : \overline{AC} = \overline{CE} : \overline{CD}$ $(10+5):20 = \overline{CE}:5$

 $3:4=\overline{\text{CE}}:5$

 $4\overline{\text{CE}} = 15$ $\therefore \overline{\text{CE}} = \frac{15}{4} \text{ (cm)}$