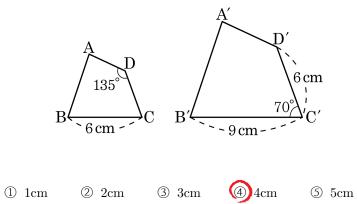
- 1. 닮은 도형에 관한 설명 중 옳지 <u>않은</u> 것은?
 - ① 닮음비란 닮은 도형에서 대응하는 변의 길이의 비이다.
 - ② 모든 원은 항상 닮은 도형이다.
 - ③ 닮음인 두 도형은 모양과 크기가 같다.
 - ④ 닮음인 두 도형의 대응각의 크기가 같다.⑤ 닮음인 두 입체도형에서 대응하는 면은 서로 닮은 도형이다.

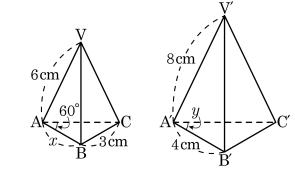
한 도형을 일정한 비율로 확대 또는 축소를 하면 모양은 같지만


크기는 달라질 수 있다. 그러므로 두 닮은 도형에서 같은 것은 모양, 대응각의 크기, 대 응하는 변의 길이의 비이다.

중에는 현금 할까금 막하다. _____

- $\mathbf{2}$. 다음 입체도형 중 항상 닮은 도형이라고 할 수 $\underline{\text{dt}}$ 것은?
 - ① 두 정육면체 ② 두 원
- ③ 두 원기둥
- ④ 두구
 ⑤ 두 정십이면체

두 원기둥은 항상 닮은 도형인 것은 아니다.


3. 다음 그림에서 □ABCD \bigcirc □A'B'C'D' 일 때, $\overline{\text{CD}}$ 의 길이는?

두 닮은 평면도형에서 대응하는 변의 길이의 비는 일정하므로 6:9=x:6 $\therefore x=\frac{36}{9}=4$

9

4. 다음 그림에서 두 삼각뿔 V – ABC 와 V′ – A′B′C′ 가 닮은꼴일 때, y-x 의 값은?

①57

② 60

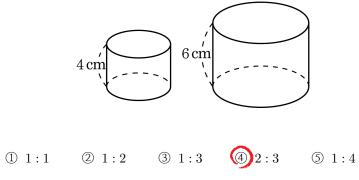
③ 63

4 64

⑤ 65

닮음비는 $\overline{\mathrm{VA}}:\overline{\mathrm{V'A'}}=6:8=3:4$ 이므로

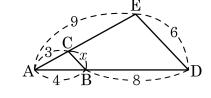
해설


x: 4 = 3: 4, 4x = 12 $\therefore x = 3$

△ABC ♡ △A'B'C' 이므로 ∠BAC = ∠B'A'C'

 $\therefore y^{\circ} = 60^{\circ}$

 $\therefore y - x = 60 - 3 = 57$


5. 다음 그림에서 두 원기둥은 서로 닮은 도형이다. 두 원기둥의 밑면의 지름의 길이의 비를 구하면?

두 원기둥이 닮은 입체도형이므로 닮음비는 4:6=2:3이다.

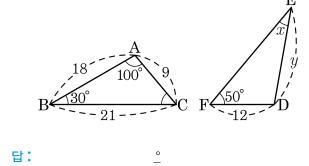
해설

6. 다음 그림에서 x의 값을 구하시오.

▶ 답: ▷ 정답: 2

해설

△ABC와 △ADE에서


 $\overline{AC}: \overline{AE} = 3:9 = 1:3$ $\overline{AB}:\overline{AD}=4:(4+8)=1:3$

∠A 는 공통 ∴ △ABC ∽ △ADE (SAS 닮음)

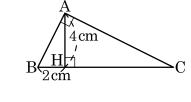
 $\overline{\mathrm{BC}}:\overline{\mathrm{DE}}=1:3$ 이므로 x:6=1:3

 $\therefore x = 2$

7. 다음 그림에서 $\triangle ABC$ 와 $\triangle DEF$ 는 닮은 도형이다. $\angle x,y$ 의 값을 구하여라.

답:

 ▶ 정답:
 ∠x = 30_


▷ 정답: y = 24

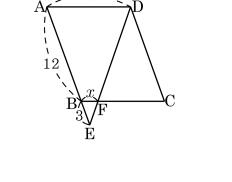
해설

 $\angle E = \angle B = 30^{\circ}, \angle x = 30^{\circ}$ $\overline{AC} : \overline{DF} = \overline{BA} : \overline{ED}$ $9 : 12 = 18 : \overline{ED},$

 $y = \overline{ED} = 24$

8. $\angle A$ 가 직각인 $\triangle ABC$ 에서 $\overline{AH} \bot \overline{BC}$ 일 때, $\triangle AHC$ 의 넓이를 구하여라.

 $\underline{\mathrm{cm}^2}$


 답:
 c

 ▷ 정답:
 16 cm²

해설

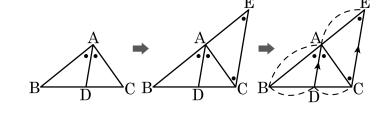
 $\overline{AH}^2 = \overline{BH} \cdot \overline{CH}$ $16 = 2 \times \overline{CH}$, $\overline{CH} = 8 \text{(cm)}$ $\therefore (\triangle AHC 의 넓이) = \frac{1}{2} \times 8 \times 4 = 16 \text{(cm}^2)$

9. 다음 그림에서 사각형 ABCD 가 평행사변형일 때, \overline{BF} 의 길이는?

① 1

②2 33 44 55

 $\square ABCD$ 가 평행사변형이므로 \overline{BE} // \overline{CD} 이다.

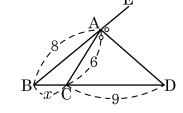

해설

 $\overline{\mathrm{BE}}:\ \overline{\mathrm{CD}}=\overline{\mathrm{BF}}:\ \overline{\mathrm{CF}}$ 이므로 3 : 12 = x : (10 - x)

12x = 30 - 3x

 $\therefore x = 2$

10. 다음은 삼각형의 내각의 이등분선으로 생기는 선분의 비를 구하는 과정이다. 빈칸에 알맞은 것은?

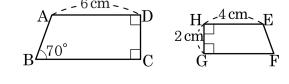


AD 는 ∠A의 이등분선
∠ACE = ⑤ 이므로 △ACE 는 이등변삼각형
AD // EC 에서 AB : AC = BD : ⑥

- ① $\angle ACD$, \overline{AB} ④ $\angle AEC$, \overline{AB}
- \bigcirc \angle ACD, \overline{AC} \bigcirc \angle AEC, \overline{AC}
- ③∠AEC, CD
- ,

 $\angle BAD = \angle CAD$ 이면 $\overline{AB} : \overline{AC} = \overline{BD} : \overline{CD}$ 이다.

11. 다음 그림과 같이 $\overline{\mathrm{AD}}$ 가 $\angle \mathrm{EAC}$ 의 이등분선일 때, x 의 길이를 구하여라.


 답:

 ▷ 정답:
 3

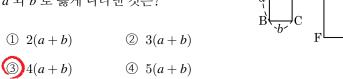
 $\overline{AB} : \overline{AC} = \overline{BD} : \overline{CD}$

8:6 = (x+9):9, x=3 $\therefore x = \overline{BC} = 3$

12. 다음 그림에서 $\square ABCD \hookrightarrow \square EFGH$ 일 때, $\angle E$ 의 크기와 \overline{CD} 의 길이 를 각각 구하여라.

- \odot $\angle E = 80^{\circ}, \overline{CD} = 6 \text{ cm}$
- ① $\angle E = 60^{\circ}, \overline{CD} = 4 \, \text{cm}$ ② $\angle E = 60^{\circ}, \overline{CD} = 6 \, \text{cm}$
- \bigcirc \angle E = 110°, \overline{CD} = 3 cm
- \triangle \angle E = 100°, \overline{CD} = 8 cm

 $\square ABCD$ \bigcirc $\square EFGH$ 이고, 닮음비는 \overline{AD} : $\overline{EH}=6:4=3:2$


해설

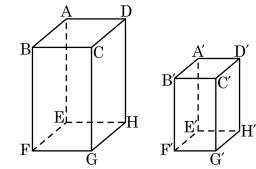
닮음 도형에서 대응하는 각의 크기는 서로 같으므로 $\angle E$ 의 크기 는 대응각 ∠A 와 같다.

따라서 \angle E 의 크기는 360° – $(90^{\circ} + 90^{\circ} + 70^{\circ}) = 110^{\circ}$ 이다. 닮음비가 3:2이므로 $3:2=\overline{\rm CD}:\overline{\rm GH}=\overline{\rm CD}:2,\,2\times\overline{\rm CD}=$

6, $\overline{CD} = 3 \,\mathrm{cm}$ 이다.

13. 다음 직사각형 $\square ABCD$ 와 $\square EFGH$ 에 대 하여 □ABCD ∽ □EFGH 이고, 닮음비가 1 : 2 일때 □EFGH 의 둘레의 길이의 합을 a 와 b 로 옳게 나타낸 것은?

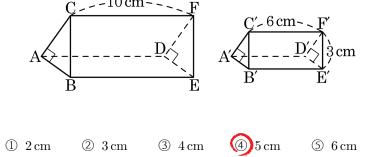
- 34(a+b)
- ⑤ 6(a+b)


해설

□ABCD와 □EFGH 의 닮음비가 1 : 2 이므로 각 대응변의 길이 의 비도 1 : 2 이다. $\overline{\mathrm{AB}}:\overline{\mathrm{EF}}=1:2=a:\overline{\mathrm{EF}}$ 이므로 $\overline{\mathrm{EF}}=2a$ 이다.

 $\overline{\mathrm{BC}}:\overline{\mathrm{FG}}=1:2=b:\overline{\mathrm{FG}}$ 이므로 $\overline{\mathrm{FG}}=2b$ 이다. \square EFGH 의 둘레의 길이는 (가로 + 세로) imes 2 이므로 (2a+2b) imes

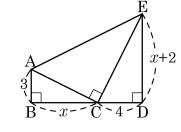
2=4(a+b) 이다.


14. 다음 두 직육면체가 서로 닮음이고 □BFGC 와 □B'F'G'C' 가 서로 대응하는 면일 때, □C'G'H'D' 와 대응하면 면은?

- ① □A'E'H'D' ④ □A'B'F'E'
- ② □C'G'H'D' ⑤ □ABFE
- ③□CGHD

□C'G'H'D' 에 대응하는 면은 □CGHD 이다.

15. 다음과 같이 닮음인 두 삼각기둥이 있다. $\overline{\text{EF}}$ 의 길이로 가장 적절한 것은?



 $\overline{CF} : \overline{C'F'} = \overline{EF} : \overline{E'F'}$ $10 : 6 = \overline{EF} : 3$

 $\therefore \overline{\mathrm{EF}} = 5\,\mathrm{cm}$

해설

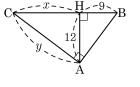
16. 다음 그림에서 $\angle B=\angle C=\angle D=90^\circ$ 일 때, x 의 값을 구하여라.

▷ 정답: 6

해설

▶ 답:

 \triangle ABC \triangle CDE 에서 \angle BAC + \angle BCA = 90° \angle BCA + \angle ECD = 90°, \angle ECD + \angle CED = 90° 이므로 \angle BCA =


∠CED, ∠BAC = ∠DCE △ABC ∽ △CDE(AA 닮음)

3: x = 4: (x+2)4x = 3x + 6

4x = 3x + 6 $\therefore x = 6$

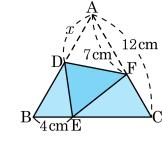
 $\therefore x = 0$

17. 다음과 같은 직각삼각형에서 x, y 의 값은 얼마인가?

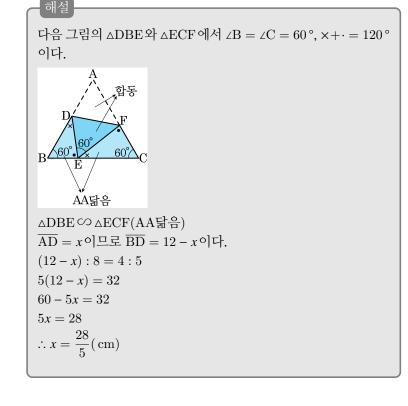
3x = 16, y = 20

① x = 16, y = 16

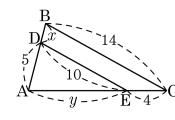
- ② x = 16, y = 18 $4 \quad x = 18, \ y = 24$
- ⑤ x = 18, y = 26


 $\overline{AH}^2 = \overline{BH} \times \overline{CH}$

144 = 9x


 $\therefore x = 16$ $\overline{AC}^2 = \overline{CH} \times \overline{CB}$

 $y^2 = 16 \times 25 = 400$ ∴ y > 0 이므로 y = 20


18. 다음 그림에서 정삼각형 \overline{ABC} 의 꼭짓점 \overline{A} 가 \overline{BC} 위의 점 \overline{E} 에 오도록 접었다. $\overline{AF}=7\,\mathrm{cm}, \overline{AC}=12\,\mathrm{cm}, \overline{BE}=4\,\mathrm{cm}$ 일 때, x의 길이를 구하여라.

▶ 답: $\underline{\mathrm{cm}}$ ightharpoonup 정답: $\frac{28}{5}$ $\underline{\mathrm{cm}}$

19. 다음 그림에서 $\overline{\mathrm{DE}} \, / \! / \, \overline{\mathrm{BC}}$ 일 때, x+y 의 값은?

해설

① 10

212

③ 14 ④ 16 ⑤ 18

△ADE ∽ △ABC 이므로

10:14=y:(y+4)y = 10

10:4=5:x

x = 2 $\therefore x + y = 12$

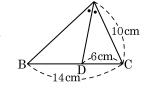
20. 다음에서 \overline{AE} : $\overline{EB} = \overline{AP}$: $\overline{PC} = \overline{DF}$: \overline{FC} 라할 때, $\angle APF + \angle EPC$ 의 크기는?

① 260° ② 261° ③

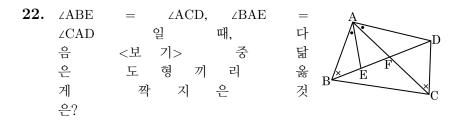
④ 263°

⑤ 264°

 $\overline{\mathrm{EP}}$ // $\overline{\mathrm{BC}}$ 이므로 $\angle\mathrm{APE} = \angle\mathrm{ACB} = 33\,^\circ$


해설

 $\angle ext{EPC} = 180\,^{\circ} - 33\,^{\circ} = 147\,^{\circ}$ $\overline{\text{AD}}$ // $\overline{\text{PF}}$ 이므로 $\angle ext{FPC} = \angle ext{DAC} = 55\,^{\circ}$


 $\angle APF = 180^{\circ} - 65^{\circ} = 115^{\circ}$

 $\angle APF = 180^{\circ} - 65^{\circ} = 115^{\circ}$ $\therefore \angle EPC + \angle APF = 147^{\circ} + 115^{\circ} = 262^{\circ}$

21. 다음 그림과 같은 $\triangle ABC$ 에서 $\angle A$ 의 이등분 선과 변 BC 와의 교점을 D 라 할 때, $\overline{\mathrm{AB}}$ 의 길이는? (단, $\overline{\mathrm{AC}}=10\,\mathrm{cm},\,\overline{\mathrm{BC}}=14\,\mathrm{cm},$ $\overline{\mathrm{DC}} = 6\,\mathrm{cm}$)

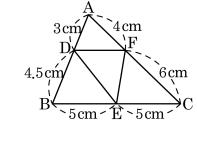
- ① $\frac{24}{5}$ cm ② $\frac{40}{5}$ cm ③ $\frac{56}{3}$ cm ④ $\frac{40}{3}$ cm
 - $\overline{\mathrm{AC}}:\overline{\mathrm{AB}}=\overline{\mathrm{DC}}:\overline{\mathrm{DB}}$ 이므로 $10:\overline{\mathrm{AB}}=6:8$ $\therefore \overline{AB} = \frac{40}{3}$

サブ \bigcirc \triangle ABC \hookrightarrow \triangle AED \bigcirc \triangle AEF \hookrightarrow \triangle DFC \bigcirc \triangle AFD \hookrightarrow \triangle CFB \bigcirc \triangle ABF \hookrightarrow \triangle ADE \bigcirc \triangle ABC \hookrightarrow \triangle ADC \bigcirc \triangle ABE \hookrightarrow \triangle ACD

해설____

2 C, H 3 C, H 4 C, H

(5) (L), (2)


(AA 닮음) ··· 闽 △ABC 와 △AED 에서 ∠BAC = ∠EAD , ĀB : ĀĒ = ĀC : ĀD

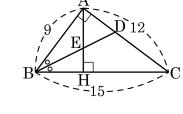
 $\angle ABE = \angle ACD$, $\angle BAE = \angle CAD$ 이므로 $\triangle ABE$ \bigcirc $\triangle ACD$

(∵ △ABE ∽ △ACD) 이므로 SAS 닮음이다. △ABC ∽ △AED (SAS 닮음) ···⑤

(1)(¬), (H)

23. 다음 그림을 보고 보기에서 옳은 것을 모두 고르면?

보기


(4) (C), (E), (E), (E), (E), (E)

해설

이 때, ∠A 는 공통, ∠ADF = ∠ABC(동위각) 이므로 △ADF∽△ABC(*AA*닮음)

 $\triangle ABC$ 에서 $\overline{AD}:\overline{DB}=\overline{AF}:\overline{FC}=2:3$ 이므로 $\overline{DF}\,/\!/\,\overline{BC}$ 이다.

 ${f 24}$. 다음 그림과 같이 $\angle A=90$ ° 인 직각삼각형 ABC 에서 $\overline{
m AH}floor$ 이 고 \overline{BD} 는 $\angle B$ 의 이등분선이다. \overline{AH} 와 \overline{BD} 의 교점을 E 라 하고, $\overline{AB}=9,\;\overline{BC}=15,\;\overline{AC}=12$ 일 때, $\triangle AED$ 의 넓이를 구하여라.

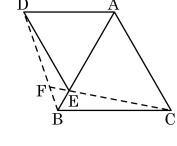
▷ 정답 :

 $\overline{\mathrm{BD}}$ 가 $\angle{\mathrm{B}}$ 의 이등분선이므로

 $\overline{\mathrm{AB}}:\overline{\mathrm{BC}}=\overline{\mathrm{AD}}:\overline{\mathrm{DC}}$

9:15=3:5

 $\triangle ABD: \triangle CBD=3:5$ 이코, $\triangle ABC=54$ 이므로 $\triangle ABD=$


 $\frac{3}{8} \times 54 = \frac{81}{4}$

또, $\overline{AB}^2 = \overline{BH} \times \overline{BC}$ 이므로 $81 = \overline{BH} \times 15$ $\therefore \overline{BH} = \frac{27}{5}$

이 때, △ABD ♡△HBE (AA 닮음) 이므로 $\overline{\mathrm{BD}}:\overline{\mathrm{BE}}=\overline{\mathrm{AB}}:\overline{\mathrm{HB}}=9:\frac{27}{5}=5:3$

 $\therefore \overline{BE} : \overline{ED} = 3 : 2$ $\therefore \triangle AED = \frac{2}{5} \triangle ABD = \frac{2}{5} \times \frac{81}{4} = \frac{81}{10}$

 ${f 25}$. 다음 그림에서 ${
m \triangle ABC}$ 와 ${
m \triangle ADE}$ 는 정삼각형이다. ${
m \overline{AC}}=20$, ${
m \overline{AD}}=$ 16 일 때, $\overline{\mathrm{FB}} imes \overline{\mathrm{EC}}$ 를 구하여라.

▷ 정답: 80

▶ 답:

△ABD 와 △ACE 에서

 $\overline{AB} = \overline{AC}$, $\overline{AD} = \overline{AE}$, $\angle DAB = \angle EAC = 60^\circ$ $\therefore \triangle ABD \equiv \triangle ACE (SAS 합동)$

또 \triangle FBE 와 \triangle ACE 에서

 \angle FEB = \angle AEC (:: 맞꼭지각)

 $\angle \text{FBE} = \angle \text{ACE} \; (\because \; \triangle \text{ABD} \equiv \triangle \text{ACE})$ ∴ △FBE∽△ACE (AA 닮음)

 $\overline{\mathrm{FB}}:\overline{\mathrm{AC}}=\overline{\mathrm{BE}}:\overline{\mathrm{EC}}$

 $(\overline{BE} = \overline{AB} - \overline{AE} = 20 - 16 = 4)$ $\overline{FB}:20=4:\overline{EC}$

 $\therefore \overline{FB} \times \overline{EC} = 80$