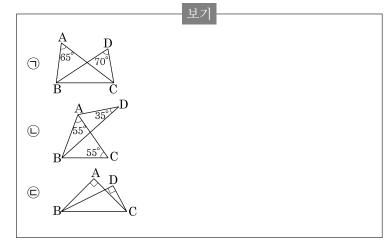

1. 다음 그림에서 $\overline{AD} / / \overline{CF}$ 이고 $\angle ADB =$ 20°, $\angle \mathrm{BFC} = 22$ ° 일 때, $\angle x + \angle y$ 의 크기 는?

① 65° ② 73° ③ 80°

⑤ 90°

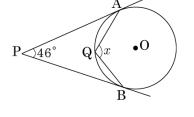

 $\overline{\mathrm{EB}}$ 를 연결하면 $\angle ADB = \angle AEB = 20\,^\circ, \ \angle BFC = \angle CEB = 22\,^\circ$

 $\therefore x = 42^{\circ}$

해설

 $\angle y = \angle {
m ADB} + \angle {
m BFC} = 42\,^{\circ}\,(\because$ 엇각의 성질을 이용) 따라서 $\angle x + \angle y = 84$ °이다.

2. 다음 그림 중에서 네 점 A, B, C, D 가 한 원 위에 있게 되는 것을 찾아라.



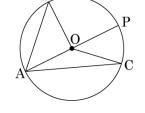
답:▷ 정답: ©

해설

① ∠BAC ≠ ∠BDC

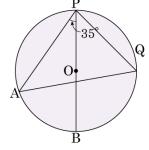
3. 다음 그림에서 \overline{PA} , \overline{PB} 는 원 O의 접선이고 $\angle APB = 46$ °일 때, x의 값을 구하여라.

▶ 답: ▷ 정답: 113_°


원의 중심 O 와 두 접점 A, B 를 이으면 $\angle PAO = \angle PBO$ 이므로

 $5.0 \mathrm{pt} 24.88 \mathrm{pt}_{\mathrm{AQB}}$ 의 중심각은 134° 이다. 따라서 나머지 호에 대한 중심각의 크기는 360° – 134° = 226° 이다. $\therefore \angle AQB = 226^{\circ} \times \frac{1}{2} = 113^{\circ}$

- 다음 그림을 설명한 것으로 옳지 <u>않은</u> 것 **4.**

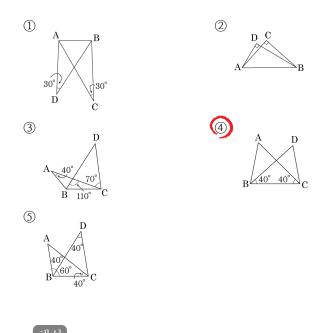

 - ① $\angle BAO = \frac{1}{2} \angle BOP$ ② $\angle CAO = \frac{1}{2} \angle COP$

 - $\textcircled{4} \angle BAO = \angle OBA$
 - \bigcirc \angle CAO + \angle ACO = \angle COP

 $2\angle BAC = \angle BOC$

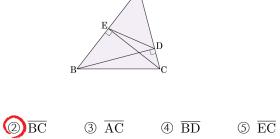
- 5. 다음 그림에서 $\angle APB = 35$ ° 일 때, $\angle AQP$ 를 구하면?
 - - ② 40° ① 35°
- ③ 45°
- ⑤ 55° ④ 50°

점 A 와 B 를 이으면


해설

 $\angle PAB = 90^{\circ}$

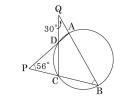
 $\angle PBA = 180\,^{\circ} - 90\,^{\circ} - 35\,^{\circ} = 55\,^{\circ}$ $\angle PBA = \angle PQA = 55^{\circ}$


 $\angle AQP = 55^{\circ}$

6. 다음 그림 중에서 네 점 A, B, C, D 가 한 원 위에 있지 <u>않은</u> 것은?

 $3 \angle BDC = 40^{\circ}$ ③ ∠BAC = 40° ⇒ 5.0ptBC 에 대한 원주각이 같다.

7. 다음 그림과 같이 삼각형 ABC 의 꼭짓점 B,C 에서 각각의 대변에 내린 수선의 발을 D,E 라고 할 때, 사각형 BCDE 에 외접하는 원의지름은?



해설

 $\angle \mathrm{BEC} = \angle \mathrm{BDC} = 90^\circ$ 이므로 사각형 BCDE 는 $\overline{\mathrm{BC}}$ 가 지름인

원에 내접한다.

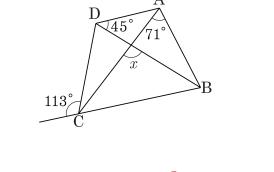
8. 다음 그림에서 $\angle B$ 의 크기는 얼마인가?

① 44° ② 45° ③ 46°

⑤ 48°

 $\angle \mathbf{B} = x$ 라고 하면

해설


 $\angle BCD = 180^{\circ} - 30^{\circ} - \angle x = 150^{\circ} - \angle x$ $\angle BAP = 180^{\circ} - 56^{\circ} - \angle x = 124^{\circ} - \angle x$

 $\angle BCD + \angle BAP = 150^{\circ} - \angle x + 124^{\circ} - \angle x = 180^{\circ}$

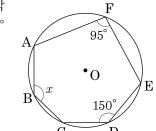
 $2\angle x = 94^{\circ}$

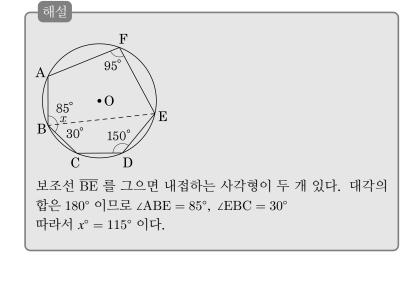
 $\therefore \angle x = 47^{\circ}$

□ABCD 가 원에 내접한다고 한다. 이때 ∠x 의 크기는? 9.

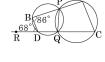
해설

① 99° ② 96° ③ 94°


4 93°


⑤ 90°

 $\angle DAC = 113^{\circ} - 71^{\circ} = 42^{\circ}$ $\therefore \angle x = 180^{\circ} - (42^{\circ} + 45^{\circ}) = 93^{\circ}$ 10. 다음 그림과 같이 원 O 에 내접하는 육각 형에서 $\angle D=150^\circ$, $\angle F=95^\circ$, $\angle B=x^\circ$ 일 때, *x* 의 값은?

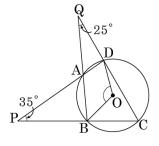

②115° ① 105° ⑤ 145° 4 135°


11. 다음 그림과 같이 $\angle B = 86^\circ$ 이 고 $\angle BDR = 68^\circ$ 일 때, $\angle A$ 의 크기로 알맞은 것은?

① 91° ② 92° ③ 93° ④ 94° ⑤ 95°

해설

 $\angle CQP = 86^{\circ}$ $\angle CAP = 180^{\circ} - 86^{\circ} = 94^{\circ}$ 12. 다음 그림에서 $\overline{AB}=4$, $\overline{AC}=1$ 이다. $5.0 \overline{ptAD}=35.0 \overline{ptAC}$ 일 때, $\angle BAD$ 의 크기를 구하여라.



답:▷ 정답: 22.5 °

_

 $5.0 \operatorname{pt} \widehat{AC} = \frac{1}{2} \times \pi = \frac{1}{2} \pi^{\circ} | \Box \Xi | 5.0 \operatorname{pt} \widehat{AD} = \frac{3}{2} \pi$ $5.0 \operatorname{pt} \widehat{AB} = \frac{1}{2} \times 4\pi = 2\pi^{\circ} | \Box \Xi |$ $5.0 \operatorname{pt} \widehat{BD} = 2\pi - \frac{3}{2}\pi = \frac{1}{2}\pi$ $\therefore \angle BAD = \frac{5.0 \operatorname{pt} \widehat{AB}}{5.0 \operatorname{pt} \widehat{AB}} \times 90^{\circ} = \frac{1}{2}\pi \times \frac{1}{2\pi} \times 90^{\circ}$ $= 22.5^{\circ}$

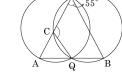
13. 다음 그림에서 □ABCD 는 원 O 에 내접 하고 $\angle \mathrm{DPC} = 35\,^\circ$, $\angle \mathrm{BQC} = 25\,^\circ$ 일 때, ∠BOD 의 크기는?

① 100° ② 110°

③120°

④ 135°

⑤ 150°


해설 $\angle BCD = x$ 라 하면, $\angle DAQ = x$

 $\angle {
m ADQ} = x + 35\,^{\circ}\,(삼각형의 외각)$

 $\triangle QAD$ 에서 x + 25° + (x + 35°) = 180° $\therefore x = 60^{\circ}$

따라서 $\angle BOD = 2\angle BCD = 2 \times 60$ ° = 120° 이다.

14. 다음 그림과 같이 반지름의 길이가 같은 두 원이 만나는 점을 $P,\ Q$ 라 하고 점 Q 를 지나는 직선이 두 원과 만나는 점을 각각 $\mathrm{A}, \; \mathrm{B}, \; \mathrm{원과}$ $\overline{\mathrm{PA}}$ 가 만나는 점을 C 라 하자. $\angle\mathrm{APB} = 55^\circ$ 일 때, $\angle\mathrm{PCQ}$ 의 크기를 구하여라.

답: ▷ 정답: 117.5 _°

두 점 P, Q 를 지나는 두 호의 길이가 같으므로 $\angle PAQ = \angle PBQ = \frac{1}{2}(180^{\circ} - 55^{\circ}) = 62.5^{\circ}$ $\therefore \angle PCQ = 180^{\circ} - \angle PBQ = 117.5^{\circ}$

 ${f 15}$. 원 O 에 내접하는 정오각형 ABCDE 에서 대각선 AC 와 BE 의 교점을 P 라 할 때, $\overline{\mathrm{AP}}=2$ 이다. 이때, 선분 CP 의 길이를 구하여라.

▶ 답: ightharpoonup 정답: $1+\sqrt{5}$

 $\angle BAC = \angle BCA = \angle ABE = \frac{1}{5} \times 180 = 36^{\circ}$

∴ △ABC ∽ △APB 또 $\angle CPB = \angle CBE = 72^{\circ}$ 이므로 $\overline{BC} = \overline{CP}$, $\overline{\mathrm{AP}}=2,\;\overline{\mathrm{CP}}=x$ 라 하면

x: (2+x) = 2: x $x = \overline{CP} = 1 + \sqrt{5}$