
1. 다음 그림에서 x, y의 값을 각각 구하면?

①
$$x = 10$$
, $y = 5\sqrt{5}$

②
$$x = 5\sqrt{5}$$
, $y = 10$

③
$$x = 10$$
, $y = 8$

①
$$x = 5\sqrt{2}$$
, $y = 5\sqrt{5}$

⑤ x = 10, y = 10

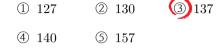
해설

위 삼각형에서 피타고라스 정리에 따라

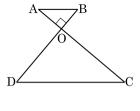
 $x^2 = 6^2 + 8^2$

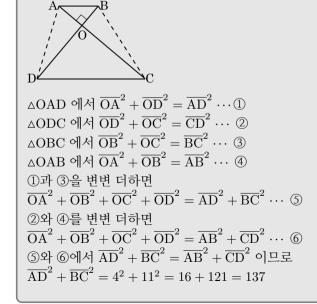
x > 0 이므로 x = 10 이고, 아래 삼각형에서 피타고라스 정리에 따라

$$y^2 + x^2 = y^2 + 10^2 = 15^2$$


$$y^2 = 15^2 - 10^2 = 125$$

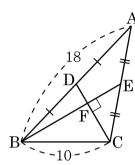
 $y > 0$ 이므로 $y = 5\sqrt{5}$ 이다.


2. 이차함수 $y = x^2 + 2x + 3$ 가 있다. 꼭짓점을 P, y 축과 만나는 점을 Q 라 할 때, 선분 PQ 의 길이를 구하면?

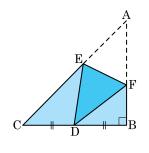

①
$$\sqrt{2}$$
 ② $2\sqrt{2}$ ③ $3\sqrt{2}$ ④ $4\sqrt{2}$ ⑤ $5\sqrt{2}$

$$y = x^2 + 2x + 3 = (x+1)^2 + 2$$

꼭짓점 P(-1, 2)
Q 는 y 절편이므로 (0, 3)
 $\overline{PQ} = \sqrt{(-1-0)^2 + (2-3)^2} = \sqrt{2}$


3. 다음 그림과 같이 ĀC⊥BD 이고 ĀB = 4, CD = 11 일 때, ĀD² + BC² 의 값을 구하여라.

4. 다음 그림과 같은 $\triangle ABC$ 에서 \overline{AB} 와 \overline{AC} 의 중점을 각각 D, E 라고하고 $\overline{BE}\bot\overline{CD}$, $\overline{AB}=18$, $\overline{BC}=10$ 일 때, \overline{AC} 의 길이를 구하면?



①
$$2\sqrt{11}$$
 ② $3\sqrt{11}$ ③ $4\sqrt{11}$ ④ $5\sqrt{11}$ ⑤ $6\sqrt{11}$

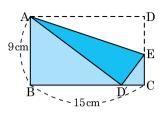
$$\overline{DE}$$
 를 그으면 중점연결 정리에 의하여
$$\overline{DE} = \frac{1}{2}\overline{BC} = 5 \text{ 이다.}$$

$$\Box DBCE \leftarrow \text{대각선이 직교하는 사각형이므로}$$

$$\overline{BD}^2 + \overline{EC}^2 = \overline{DE}^2 + \overline{BC}^2$$

 $81 + \overline{EC}^2 = 25 + 100$ $\therefore \overline{EC} = 2\sqrt{11}(\because \overline{EC} > 0)$ $\therefore \overline{AC} = 2 \times 2\sqrt{11} = 4\sqrt{11}$

5. 다음 그림은 $\overline{AB} = \overline{BC} = 6 \, \text{cm}$ 인 직각이 등변삼각형의 종이를 EF 를 접는 선으로 하여 점 A 가 \overline{BC} 의 중점 D 에 오도록 접은 것이다. ΔFDB 의 넓이를 구하면?


①
$$\frac{13}{4} \text{ cm}^2$$

③ $\frac{27}{8} \text{ cm}^2$
⑤ $\frac{17}{5} \text{ cm}^2$

②
$$\frac{10}{3}$$
 cm²
④ $\frac{9}{2}$ cm²

$$\frac{17}{5}$$
 cm²

 $\overline{BF} = x \text{ cm}$ 라고 두면 $\overline{AF} = \overline{DF} = (6-x) \text{ cm}$ 이고, $\overline{DB} = 6 \div 2 =$ 3(cm) 이다. $\triangle FBD$ 는 직각삼각형이므로 $(6-x)^2 = x^2 + 3^2$, $x = \frac{9}{4}$ 이다. $\triangle FDB$ 의 넓이는 $\frac{1}{2} \times 3 \times \frac{9}{4} = \frac{27}{8} (\text{cm}^2)$ 이다.

6. 직사각형 ABCD 를 다음 그림과 같이 점 D 가 변 BC 위에 오도록 접었을 때, ΔAD'E 의 넓이는?

①
$$\frac{33}{2}$$
 cm²
④ $\frac{65}{2}$ cm²

 $3\frac{55}{2}$ cm²

$$\triangle ABD'$$
 에서 $\overline{BD'}=\sqrt{15^2-9^2}=12 (cm)$ 이다. 따라서 $\overline{D'C}=15-12=3 (cm)$ 이다.

$$\overline{\mathrm{D'E}}=x\,\mathrm{cm}$$
 라 하면, $\overline{\mathrm{CE}}=(9-x)\,\mathrm{cm}$ $\Delta\mathrm{D'CE}$ 에서 $x^2=(9-x)^2+3^2,\;x=5$ 이다. 따라서 $\Delta\mathrm{AD'E}$ 의

넓이는 $\frac{1}{2} \times 15 \times 5 = \frac{75}{2} (\text{cm}^2)$ 이다.

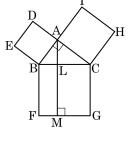
7. 두 점 P(2, 2), Q(a, -1) 사이의 거리가 3√5 일 때, a 의 값은? (단, 점 Q 는 제3 사분면의 점이다.)

①
$$-8$$
 ② -6 ③ -4 ④ 4 ⑤ 8

해설

$$\sqrt{(2-a)^2+3^2}=3\sqrt{5}$$
 에서 $a=-4$, 8 이다.
점 Q 는 제3 사분면 위에 있으므로
 $a<0,\ a=-4$ 이다.

8. 다음 그림은 ∠A = 90° 인 직각삼각형 ABC 의 세 변을 각각 한 변으로 하는 정사각형을 그린 것이다. 다음 중 옳지 않은 것은?


해설

②
$$\triangle EBC \equiv \triangle ABF$$

$$\bigcirc$$
 \triangle ACH = \triangle LMC

$$\textcircled{4} \triangle ADB = \frac{1}{2} \square BFML$$

$$\textcircled{4} \ \triangle ADB = \frac{1}{2} \square BFML$$

$$\textcircled{5} \triangle ABC = \frac{1}{2} \square ACHI$$

 \square ACHI = \overline{AC}^2 이므로 $\triangle ABC \neq \frac{1}{2}\square ACHI$ 이다.