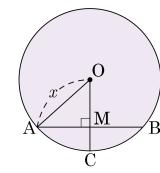
다음 그림에서 $\overline{\mathrm{AB}}\bot\overline{\mathrm{OC}}$, $\overline{\mathrm{MB}}=6$, $\overline{\mathrm{MC}}=4$ 일 때, x 의 길이를 1. 구하여라.



① $13\sqrt{3}$ ② $13\sqrt{2}$ ③ 13

해설

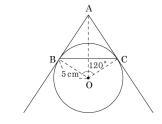
 $\overline{\text{OA}} = \overline{\text{OC}} \stackrel{\text{def}}{=} x$ 라 두면 $\overline{\text{OM}} = x - 4$ 로 둘 수 있다. $x^2 = (x - 4)^2 + 6^2$ $x^2 = x^2 - 8x + 16 + 36$

$$x^2 = x^2 - 8x + 1$$

 $8x = 52 \quad \therefore x = \frac{13}{2}$

$$0x - 92 \dots x -$$

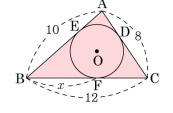
다음 그림에서 \overrightarrow{AB} , \overrightarrow{AC} 는 원 O 의 접선이고 두 점 B, C 는 원 O 의 접점이다. $\angle BOC = 120^\circ$, $\overrightarrow{BO} = 5 \mathrm{cm}$ 일 때, 다음 중 옳지 <u>않은</u> 것은? 2.



 $\overline{\text{AO}} = 12\text{cm}$ $\textcircled{4} \angle BAO = 30^{\circ}$

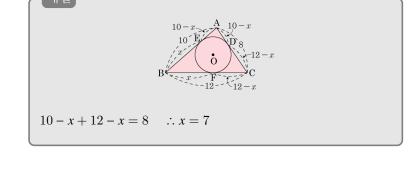
 $\angle BAO = 30^{\circ}$ 이므로 $1:2=5:\overline{AO}$ $\therefore \overline{AO} = 10\,\mathrm{cm}$

3. 원 O 가 △ABC 의 각 변과 점 D, E, F 에서 접할 때, *x* 의 값을 구하여라.

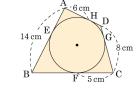


▶ 답:

▷ 정답: 7



4. 다음 그림에서 □ABCD 는 원 O 에 외접하고, 점 E, F, G, H 는 각각 원 O 의 접점이다. 이때, \overline{BC} – \overline{AD} 의 값은?



해설

 \bigcirc 2cm

② 3cm

34cm

④ 5cm

⑤ 6cm

 $\overline{\mathrm{AH}} = \overline{\mathrm{AE}} = 6(\mathrm{cm}),$

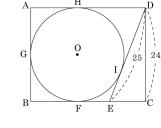
 $\overline{\mathrm{BE}} = \overline{\mathrm{BF}} = 14 - 6 = 8 \mathrm{(cm)},$

 $\overline{\text{CF}} = \overline{\text{CG}} = 5(\text{cm}),$

 $\overline{\overline{DG}} = \overline{\overline{DH}} = 8 - 5 = 3(\text{cm})$ $\overline{\overline{BG}} = \overline{\overline{AD}} = 13 \quad 0 = 4(\text{cm})$

 $\therefore \overline{BC} - \overline{AD} = 13 - 9 = 4 \text{ (cm)}$

 $\mathbf{5}$. 다음 그림과 같이 직사각형 ABCD 의 세 변에 접하는 원 O 가 있다. $\overline{
m DE}$ 가 원의 접선이고, $\overline{
m DE}=25$, $\overline{
m DC}=24$ 일 때, $\overline{
m BE}$ 의 길이를 구하여라.



▶ 답: ▷ 정답: 21

 $\overline{\mathrm{DE}} = 25$ 이므로 $\overline{\mathrm{CE}} = \sqrt{25^2 - 24^2} = 7$

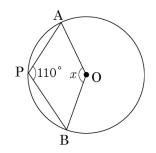
 $\overline{\mathrm{BE}} = x$ 라 하면 $\overline{\mathrm{AD}} = x + 7$

외접사각형의 성질에 의해

 $\overline{AB} + \overline{DE} = \overline{BE} + \overline{DA}$ 24 + 25 = x + x + 7

x = 21

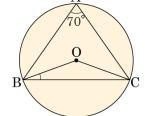
6. 다음 그림에서 ∠x 의 크기를 구하면? (단, O 는 원의 중심)



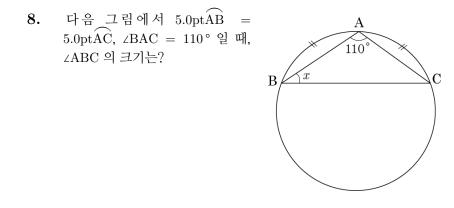
① 110° ② 120° ③ 130° ④ 140° ⑤ 150°

원주각= $\frac{1}{2}$ × (중심각) $\angle AOB = 2\angle APB = 2 \times 110^{\circ} = 220^{\circ}$ $\therefore \angle x = 360^{\circ} - 220^{\circ} = 140^{\circ}$ 7. 다음 그림에서 ∠BAC = 70 ° 일 때, ∠OBC 의 크기는?

③ 25° ④ 30° ⑤ 35°



∠BOC = 2 × 70° = 140° △BOC 는 이등변삼각형이므로 $\angle \mathrm{OBC} = \frac{1}{2} \times 40^{\circ} = 20^{\circ}$

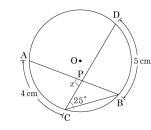


① 30°

②35° 3 40° 45°

⑤ 50°

호의 길이가 같으므로 ∠ABC = ∠ACB = $\frac{1}{2}$ × (180° - 110°) = $\frac{1}{2}$ × 70° = 35° 9. 다음 그림에서 $5.0 \mathrm{pt}\widehat{AC} = 4\,\mathrm{cm}$, $5.0 \mathrm{pt}\widehat{BD} = 5\,\mathrm{cm}$, $\angle DCB = 25^\circ$ 일 때, $\angle APC$ 의 크기는?



① 35°

③ 55°

④ 65°

⑤ 75°

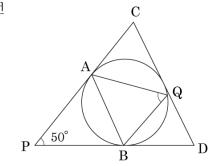
5.0ptAC: 5.0ptBD = ∠ABC: ∠BCD

 $4:5 = \angle ABC:25^{\circ}$

 $\therefore \angle ABC = 20^{\circ}$

 $\therefore \angle APC = \angle PBC + \angle PCB = 20^{\circ} + 25^{\circ} = 45^{\circ}$

10. 다음 그림에서 \overline{PA} , \overline{PB} 가 접선 일 때, ∠AQB 의 크기는?



① 65°

 260° 355° 45° 540°

 $\overline{\mathrm{PA}} = \overline{\mathrm{PB}}$ 이므로 $\angle\mathrm{ABP} = 65\,^\circ$

해설

또한, 접선과 현이 이루는 각의 크기는 그 내부에 있는 호에 대한 원주각의 크기와 같으므로 $\angle ABP = \angle AQB = 65$ ° 이다.

- 11. 수평면과 20° 를 이루는 경사면이 있다. 이 경사면을 똑바로 오르지 않고 오른쪽으로 30° 되는 방향으로 $120\,\mathrm{m}$ 올라갔을 때, 처음 오르기 시작한 지점보다 몇 m 높은 곳에 있게 되는지 소수 첫째 자리까지 구하면? (단, $\sin 20^\circ = 0.3420$)
 - ① 34.5 m

② 34.6 m ④ 36.5 m

③35.5 m

_

처음 오르기 시작한 지점을 A , 똑바로 오르는 방향을 \overline{AL} , \overline{AL}

해설

보다 오른쪽으로 $30\,^\circ$ 되는 방향으로 $120\mathrm{m}$ 올라간 지점을 B 라하자. B 지점에서 $\overline{\mathrm{AL}}$ 에 내린 수선의 발을 C 라 하면 $\overline{\mathrm{AC}} = \overline{\mathrm{AB}}\cos 30\,^\circ = 120 \times \frac{\sqrt{3}}{2} = 60\,\sqrt{3}(\,\mathrm{m})$

AC 는 수평면과 20°를 이루므로 C 의 높이는

따라서 35.5 m 이다.

 $\overline{AC} \sin 20^{\circ} = 60 \sqrt{3} \times 0.3420 = 60 \times 1.7321 \times 0.3420 = 35.54(m)$

12. 다음 그림에서 \overline{AB} 는 원 O의 지름이고 $\angle AOC = 120^\circ$, $\angle ADC = 90^\circ$, $\overline{AO} = 12$ cm 일 때, $\triangle CAD$ 의 넓이를 구하여 라.



ightharpoonup 정답: $54\sqrt{3}$ $ext{cm}^2$

▶ 답:

 $\triangle CAD = \triangle OAC + \triangle OCD$ $\triangle OAC$ 에서 $\overline{OA} = \overline{OC}$ 이므로 $\overline{OC} = 12\,\mathrm{cm}$

 $\cos 60^{\circ} = \frac{\overline{OD}}{\overline{OC}} = \frac{\overline{OD}}{12} = \frac{1}{2}$:: $\overline{OD} = 6 \text{ cm}$ $\triangle OAC = \frac{1}{2} \times 12 \times 12 \times \sin 60^{\circ} = 36 \sqrt{3} \text{ (cm}^2)$

 $\underline{\mathrm{cm}^2}$

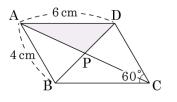
 $\triangle OCD = \frac{1}{2} \times 12 \times 6 \times \sin 60^{\circ} = 18\sqrt{3} \text{ (cm}^2)$

 $\triangle \text{CAD} = 36\sqrt{3} + 18\sqrt{3} = 54\sqrt{3} \text{ (cm}^2)$

다음 그림과 같은 평행사변형 ABCD 에서 대각선 BD 와 AC 의 교점을 P라 한다. ∠BCD = 60°, AD = 6cm, AB = 4cm 일 때, △APD 의 넓이를 구하여라.

▶ 답:

해설



ightharpoonup 정답: $3\sqrt{3}$ cm^2

 $\triangle APD = \frac{1}{2} \triangle ABD$ $= \frac{1}{2} \times \frac{1}{2} \times 4 \times 6 \times \sin 60^{\circ}$ $= \frac{1}{2} \times \frac{1}{2} \times 4 \times 6 \times \frac{\sqrt{3}}{2}$ $= 3\sqrt{3} \text{ (cm}^2)$

 $\underline{\mathrm{cm}^2}$

14. 다음 그림과 같이 두 대각선의 길이가 a, b 인 사각형의 넓이가 $\frac{1}{4}ab$ 라 할 때, 둔각인 ∠DEC 의 크기는?

① 110° ② 120° ③ 130° ④ 140°

⑤ 150°

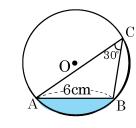
 $\angle DEC = x$ 라 하면

($\square ABCD$ 의 넓이) = $\frac{1}{2} \times a \times b \times \sin(180^{\circ} - x)$ $=\frac{1}{4}ab$

$$-\frac{1}{4}$$

 $\sin(180^{\circ} - x) = \frac{1}{2}$ $180^{\circ} - x = 30^{\circ}, \ x = 150^{\circ}$

15. 다음 그림과 같이 \overline{AB} 에 대한 원주각의 크기가 30° 이고 $\overline{AB}=6\mathrm{cm}$ 인 원 O 에 대하여 색칠한 부분의 넓이는?



- ① $\left(6\pi 6\sqrt{3}\right) \text{cm}^2$ $(6\pi - 8\sqrt{3}) \text{ cm}^2$
- $(6\pi 7\sqrt{3}) \text{ cm}^2$ $(6\pi - 9\sqrt{3}) \text{ cm}^2$

-6 cm \ 한 호에 대한 원주각의 크기는 같으므로

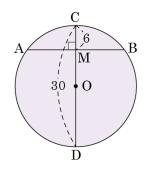
 $\angle AC'B = \angle ACB = 30^{\circ}$

∴ $\angle AOB = 60^{\circ}$ ∴ △OAB 는 정삼각형이므로

(색칠한 부분의 넓이)

= (부채꼴OAB의 넓이) – (\triangle OAB의 넓이) = $36\pi \times \frac{60^{\circ}}{360^{\circ}} - \frac{\sqrt{3}}{4} \times 6^{2}$ = $6\pi - 9\sqrt{3}$ (cm²)

16. 다음 그림과 같이 지름의 길이가 30 인 원 O 에서 \overline{AB} $\bot\overline{CM}$, $\overline{CM}=6$ 일 때, 현 AB의 길이는?



① 12 ② 16

해설

- ③ 24 ④ 34
- ⑤ 36

 $\overline{\mathrm{OB}} = 15, \overline{\mathrm{OM}} = 9$ 이므로 $\triangle OBM$ 에서 $\overline{BM} = \sqrt{15^2 - 9^2} = 12$ $\overline{\mathrm{BM}} = \overline{\mathrm{AM}}$ 이므로 $\overline{\mathrm{AB}} = 2 \times 12 = 24$ 이다. 30 17. 다음 그림의 원 O 에서 \overline{PT} , $\overline{PT'}$ 은 접선이고, 두 점 T, T' 은 접점이다. $\angle OTT' = 15^\circ$ 일 때, $\angle TPT'$ 의 크기를 구하여라.



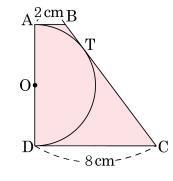
 ▷ 정답:
 30 °

▶ 답:

 $\angle PTO = \angle PT'O = 90^{\circ}$

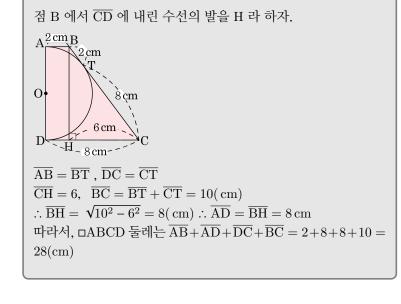
해설

∠PTT' = 90° - 15° = 75° △PTT'은 이등변삼각형이므로 ∠TPT' = 180° - 75° - 75° = 30° **18.** 그림에서 \overline{AD} 는 반원의 지름이고, \overline{AB} , \overline{BC} , \overline{CD} 는 반원에 접한다. 이 때, $\Box ABCD$ 의 둘레의 길이는?

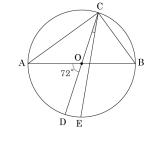


① 21cm ② 28cm ③ 31cm ④ 35cm ⑤ 40cm

해설



 ${f 19}$. 다음 그림에서 ${f \overline{AB}},\ {f \overline{CD}}$ 는 원 O 의 지름이고, ${f \overline{CE}}$ 는 $\angle ACB$ 의 이등 분선이다. ∠AOD = 72° 일 때, ∠DOE 의 크기는?



① 15° ② 16° ③ 17°

4 18°

⑤ 19°

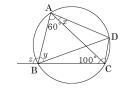
해설

 $\triangle AOC$ 는 이등변삼각형이므로 $\angle ACD = \frac{1}{2} \times 72^\circ = 36^\circ$ 이다. 또한, 반원에 대한 원주각 $\angle ACB = 90^\circ$ 이고 \overline{CE} 의 이등분선이 $\angle ACE = \angle ACO + \angle DCE$ 이다. $45^{\circ} = 36^{\circ} + \angle DCE$

 $\therefore \angle DCE = 9^{\circ}$

(원주각 $)=\frac{1}{2}\times$ 중심각 이므로 $5.0 \mathrm{ptDE}$ 의 원주각이 9° 이므로 $5.0 \mathrm{ptDE}$ 의 중심각인 $\angle DOE=9^{\circ}\times 2=18^{\circ}$ 이다.

20. 다음 그림에서 $\angle x + \angle y + \angle z$ 의 값을 구하면?



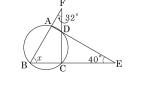
4 160°

⑤180° ① 100° ② 120° ③ 140°

 $\angle {\rm CBD} = \angle x$ $\angle z = \angle \mathrm{ADC}$ 이므로

 $\therefore \ \angle \text{ABC} + \angle \text{ADC} = \angle x + \angle y + \angle z = 180^{\circ}$

21. 다음 \Box ABCD 가 원에 내접할 때, $\angle x$ 의 크기는?



① 50° ② 52°

③ 54°

④ 56° ⑤ 58°

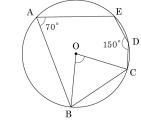
해설 $\angle x = \angle \mathrm{ADF} = \angle \mathrm{CDE}$

 $\angle BAD = \angle x + 32^{\circ} = \angle DCE$

 $\triangle DCE$ 에서 $\angle x + 32^{\circ} + \angle x + 40^{\circ} = 180^{\circ}$

 $\therefore \angle x = 54^{\circ}$

22. 다음 그림과 같이 오각형 ABCDE 가 원 O 에 내접하고 ∠A = 70°, ∠D = 150° 일 때, ∠BOC 의 크기를 구하여라.



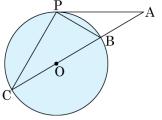
▷ 정답: 80 º

▶ 답:

B 와 D 를 이으면 □ABDE 는 원에 내접하므로 ∠A + ∠BDE =

 180° $\angle BDC = 70^{\circ} + 150^{\circ} - 180^{\circ} = 40^{\circ}$ $\angle BOC = 2\angle BDC = 2 \times 40^{\circ} = 80^{\circ}$

23. 다음 그림에서 점 O 는 원의 중심, 직선 AP 는 원의 접선이다. \angle PBA = $120\,^{\circ}$ 일 때, \overline{AB} : \overline{PB} 를 간단한 비로 나타 내면 m:n 이다. m+n 의 값을 구하 여라.



▶ 답: ▷ 정답: 2

해설

∠CPB = 90°이므로

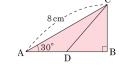
 $\angle \mathrm{BPA} = 30\,^{\circ}$ $\angle PCB = 30\,^{\circ}$

 $\angle PBA = 120^{\circ}$

∴ $\angle PAB = 30^{\circ}$

 $\triangle PBA$ 는 $\angle PAB = \angle APB$ 인 이등변삼각형이다. $\therefore \ \overline{AB} : \overline{PB} = 1 : 1$

 ${f 24}$. 다음 그림에서 점D 가 ${f AB}$ 의 중점일 때, ${f CD}$ 의 길이는?



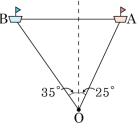
① $\sqrt{3}$ cm $\bigcirc 2\sqrt{7}$ cm $\bigcirc 2\sqrt{11}$ cm

② $2\sqrt{2}$ cm ③ $2\sqrt{3}$ cm

해설

 $\angle A=30^\circ$ 이므로 $\overline{AB}=8 imes\cos30^\circ=4\sqrt{3}$ 이다. $\overline{\mathrm{BC}} = 8 \times \sin 30^{\circ} = 4$ 이므로 $\Delta\mathrm{CDB}$ 에 피타고라스 정리를 적용하면 $\overline{\text{CD}} = \sqrt{(2\sqrt{3})^2 + 4^2} = \sqrt{28} = 2\sqrt{7}$

25. 같은 시각에 O 지점을 출발한 A, B 두 배가 있다. A는 시속 10 km로 북동쪽 25°의 방향으로 가고, B는 시속 8 km로 북서쪽 35°의 방향으로 갔다. O 지점을 출발한지 1 시간 30 분 후에 두 배 사이의 거리를 구하여라.



답:
 > 정답: 3√21 km

 $\underline{\mathrm{km}}$

1시간 30분 후의 두 배의 위치를 점 A, B라 하고, 점 B에서 $\overline{\mathrm{OA}}$

에 내린 수선의 발을 H라 하면 OA = 10 × 1.5 = 15 (km)

 $\overline{OB} = 8 \times 1.5 = 12 \text{ (km)}$ $\overline{BH} = 12 \sin 60 \degree = 6 \sqrt{3} \text{ (km)}$

 $BH = 12 \sin 60^{\circ} = 6 \sqrt{3} (\text{km})$ $\overline{OH} = 12 \cos 60^{\circ} = 6 (\text{km})$

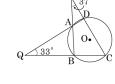
∴ AH = 15 - 6 = 9 (km)
 △BHA는 직각삼각형이므로

 $\overline{AB} = \sqrt{\overline{AH^2 + \overline{BH^2}}}$ $= \sqrt{9^2 + (6\sqrt{3})^2}$

 $= 3\sqrt{21} \text{ (km) 이다.}$

- 5 **V**21 (KIII) • [

26. 다음 그림과 같이 원 O 에 내접하는 □ABCD 에서 DA 와 CB 의 연장선의 교점을 Q , BA 와 CD 의 연장선의 교점을 P 라 하자.
∠P = 37°, ∠Q = 33° 일 때, ∠BCD 의 크기를 구하여라.



➢ 정답: 55 º

▶ 답:

 $\angle BCD = x$ 라고 하면

해설

 $\angle CBP = 180^{\circ} - 37^{\circ} - x = 143^{\circ} - x$

∠QDC = 180° - 33° - x = 147° - x □ABCD 가 원에 내접하므로

 $\begin{vmatrix} 143^{\circ} - x + 147^{\circ} - x = 180^{\circ} \\ 290^{\circ} - 2x = 180^{\circ} \end{vmatrix}$

 $\begin{vmatrix} 290^{\circ} - 2x = 180^{\circ} \\ -2x = -110^{\circ} \end{vmatrix}$

 $\therefore \angle x = 55^{\circ}$

27. 다음 그림에서 직선 AB 는 두 원의 공통접 선이고, 점 P, Q 는 두 원의 교점이다.
 ∠APB = 150°일 때, ∠AQB 의 크기를 구하여라.

A 150° B P Q

▷ 정답: 30°

✓ 30 · 30 ·

▶ 답:

해설

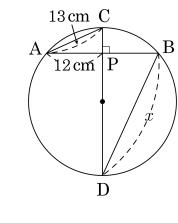
두 점 P, Q 를 지나는 직선을 긋고, 직선 AB 와의 교점을 R 라

A R B

한다.

ΔAPQ 에서 ∠PAR = ∠AQP 이고
ΔBPQ 에서 ∠PBR = ∠BQP 이므로
ΔAPB 에서
∠PAR + ∠PBR = 180° - 150° = 30°
∠AQB = ∠AQP + ∠BQP
= ∠PAR + ∠PBR = 30°

 ${f 28}$. 다음 그림과 같이 원의 두 현 AB,CD 의 교점을 P 라 할 때, ${f \overline{AP}}$ = $12\,\mathrm{cm}$, $\overline{\mathrm{AC}}=13\,\mathrm{cm}$, $\angle\mathrm{CPB}=90\,^\circ$ 이다. $\overline{\mathrm{BD}}$ 의 길이를 구하여라.



 $\underline{\mathrm{cm}}$

ightharpoonup 정답: $rac{156}{5}$ $m \underline{cm}$

 $\overline{\mathrm{BC}}$ 를 그으면 $\triangle \mathrm{CAP} \equiv \triangle \mathrm{CBP}$

해설

∠CBD = 90°이므로

∠CAP = ∠CBP = ∠BDP 이므로

△CAP∽△BDP (AA 닮음) $\overline{\mathrm{AC}}:\overline{\mathrm{DB}}=\overline{\mathrm{CP}}:\overline{\mathrm{BP}}$

13: x = 5: 12 ∴ $x = \frac{156}{5}$ (cm)

29. 다음 그림에서 *x* 의 크기를 구하여라. (단, 단위는 생략한다.)

답:▷ 정답: 101°

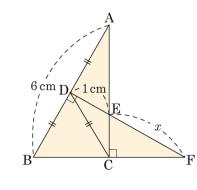
 $\overline{\mathrm{BD}} \cdot \overline{\mathrm{BA}} = \overline{\mathrm{BC}} \cdot \overline{\mathrm{BE}}$ 이므로

해설

 $\angle ADF = 180^{\circ} - 111^{\circ} = 69^{\circ}$ $\therefore x = 69^{\circ} + 32^{\circ} = 101^{\circ}$

... x = 05 | 52 = 101

30. 다음 그림에서 $\angle ACF = \angle FDB = 90^\circ$ 이고 $\overline{AD} = \overline{BD} = \overline{DC}$ 이다. $\overline{AB} = 6 \mathrm{cm}$, $\overline{DE} = 1 \mathrm{cm}$ 일 때, \overline{EF} 의 길이를 구하면?



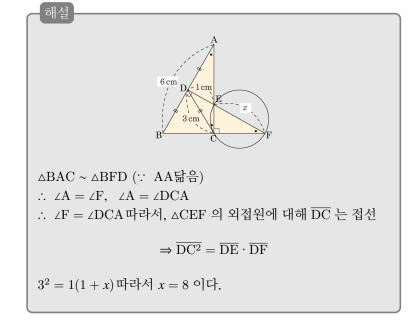
① 5cm

② 6cm

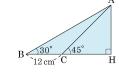
③ 7cm

4 8cm

⑤ 9cm



31. 다음 \triangle ABC 에 대한 설명 중 옳은 것은?



- ① $\overline{BC} = \overline{CA}$ 이다. ② $2\overline{BC} = \overline{CA}$ 이다.
- ③ $\overline{\text{CH}} = \overline{\text{AH}} = 6$ 이다.
- $\overline{\text{(4)}}\overline{\text{CH}} = \overline{\text{AH}} = 6(\sqrt{3} + 1)$ 이다. ⑤ $\overline{AB} = 12\sqrt{3}$ 이다.

$\overline{\mathrm{AH}} = x$ 라 하면

해설

 $\overline{\text{AH}} : \overline{\text{BH}} = 1 : \sqrt{3} = x : x + 12, \sqrt{3}x - x = 12, x = 6(\sqrt{3} + 1)$

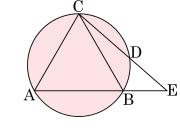
 ΔACH 는 직각이등변삼각형이므로 $\overline{CH}=\overline{AH}=6(\sqrt{3}+1)$

 $\angle {
m BAH} = 60^\circ$ 이므로 $\overline{
m AB} = y$ 라 하면 $\overline{
m AB}:\overline{
m AH} = 2:1=y:$

이다.

 $6(\sqrt{3}+1), y = 12(\sqrt{3}+1)$ 이다.

32. 다음 그림에서 호 AC 와 호 BC 의 길이가 같고, 현 AB 의 연장선과 길이가 3 인 현 CD 의 연장선의 교점을 E 라 할 때, $\overline{DE}=2$ 이다. 이 때, 선분 BC 의 길이를 구하여라.

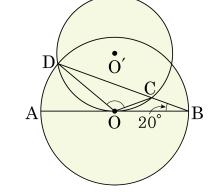


답:> 정답: √15

 $\angle CBD = \angle CAD = \angle CAB - \angle DAB = \angle CBA - \angle BCD = \angle CEB$

따라서 선분 BC 는 삼각형 BDE 의 외접원의 접선이므로 $\overline{BC}^2=15$ $\therefore \overline{BC}=\sqrt{15}$

33. 다음 그림과 같이 원 O' 은 AB 를 지름으로 하는 반원 O 의 중심에서 접하고 5.0ptAB 위의 점 D 와 만난다. BD 와 원 O' 과의 교점이 C 이고, ∠CBO = 20°일 때, ∠DOC 의 크기를 구하여라.



➢ 정답: 120°

▶ 답:

 $\overline{\mathrm{OB}} = \overline{\mathrm{OD}}$ 이므로

해설

 $\angle ODC = \angle OBC = 20^{\circ}$ ∴ $\angle ODC = \angle COB = 20^{\circ}$ ∴ $\angle DCO = 40^{\circ}$

∴ ∠DCO = 40° ∠DOC = $180^{\circ} - (20^{\circ} + 40^{\circ}) = 120^{\circ}$