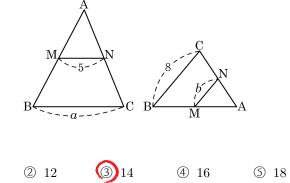
다음 그림에서 점 $\mathrm{M,N}$ 이 각각 $\overline{\mathrm{AB}},\overline{\mathrm{AC}}$ 의 중점일 때, a+b 를 구하 **1.** 여라.



① 10

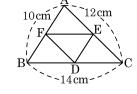
314

4 16

a = 10, b = 4

 $\therefore a + b = 14$

다음 그림의 △ABC 에서 세 변의 중점을 2. D, E, F 라고 할 때, △DEF 의 둘레의 길 이를 구하여라.

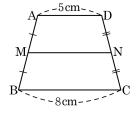


▶ 답: ▷ 정답: 18<u>cm</u>

 $\underline{\mathrm{cm}}$

 $\overline{DE} + \overline{EF} + \overline{FD} = \frac{1}{2}\overline{AB} + \frac{1}{2}\overline{BC} + \frac{1}{2}\overline{CA}$ = 5 + 7 + 6 = 18 (cm)

3. 다음 그림과 같이 $\overline{\mathrm{AD}} \, / \! / \, \overline{\mathrm{BC}}$ 인 사다리꼴 \overline{ABCD} 에서 $\overline{AB},\overline{CD}$ 의 중점을 각각 M,N이라 할 때, $\overline{\mathrm{MN}}$ 의 길이를 구하여라.

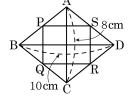


▶ 답: ▷ 정답: 6.5 cm

 $\underline{\mathrm{cm}}$

 $\overline{\mathrm{MN}} = \frac{1}{2}(\overline{\mathrm{AD}} + \overline{\mathrm{BC}}) = \frac{1}{2} \times (5+8) = 6.5 (\,\mathrm{cm})$

4. 다음 그림에서 □ABCD 는 마름모이다. □ABCD 의 네 변의 중점을 각각 P,Q,R,S 라고 할 때, □PQRS 의 둘레의 길이를 구하 여라.



▷ 정답: 18 cm

▶ 답:

 $\overline{\overline{PQ}} = \overline{SR} = \frac{1}{2}\overline{AC} = 4(\text{ cm}),$ $\overline{PS} = \overline{QR} = \frac{1}{2}\overline{BD} = 5(\text{ cm}),$

∴ (□PQRS 의 둘레의 길이)= 2(4+5) = 18(cm)

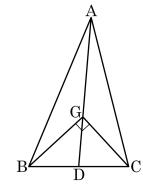
 $\underline{\mathrm{cm}}$

5. 다음 그림에서 점 G 가 \triangle ABC 의 무게중심일 때, x+y+a+b 의 값은?

- ① 10
- ② 11
- **3**12
- 4 13
- **⑤** 14

$$x=rac{1}{2}\overline{\mathrm{GC}}=3$$
 , $y=2\overline{\mathrm{EG}}=4$, $a=rac{1}{2}\overline{\mathrm{EG}}=2$, $b=rac{1}{2}\overline{\mathrm{GF}}=3$, 그러므로 $3+4+2+3=12$

6. 다음 그림에서 점 G 는 $\triangle ABC$ 의 무게중심이다. $\overline{BC}=10\,\mathrm{cm}$ 일 때, \overline{AG} 의 길이를 구하여라.



 $\underline{\mathrm{cm}}$

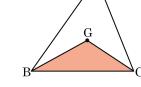
▷ 정답: 10cm

▶ 답:

 $\overline{AG} = \overline{CD} = \overline{GD} = 5(\text{ cm})$ $\overline{AG} = 2\overline{GD} = 10(\text{ cm})$

다음 그림에서 ΔGBC = 12 cm² 일 때, 7. ΔABC 의 넓이를 구하여라. (단, 점 G 는 삼각형의 무게중심)

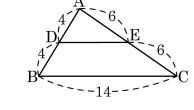
① $12 \,\mathrm{cm}^2$ ② $18 \,\mathrm{cm}^2$ $3 24 \,\mathrm{cm}^2$ $436 \,\mathrm{cm}^2$ $54 \,\mathrm{cm}^2$



 $\triangle GBC = \frac{1}{3} \triangle ABC$ 이므로 $12 = \frac{1}{3} \triangle ABC$

 $\therefore \triangle ABC = 36 (\,\mathrm{cm}^2)$

다음 그림에서 $\overline{AB}, \ \overline{AC}$ 의 중점이 D, E 일 때, ΔADE 의 둘레를 구하여라. 8.

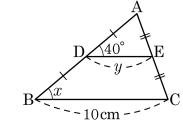


▶ 답: ▷ 정답: 17

 \overline{AB} , \overline{AC} 의 중점이 D, E 이므로

 $\overline{\rm DE}=rac{1}{2} imes\overline{
m BC}=rac{1}{2} imes14=7$ 이다. 따라서 $\triangle
m ADE$ 의 둘레는 4+6+7=17 이다.

9. 다음 그림의 $\triangle ABC$ 에서 점 D, E가 \overline{AB} , \overline{AC} 의 중점일 때, x, y의 값은?

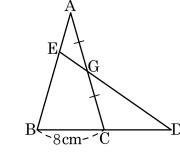


- ① $x = 30^{\circ}, y = 5 \text{cm}$ ③ $x = 40^{\circ}, y = 7 \text{cm}$
- ② $x = 35^{\circ}$, y = 7 cm④ $x = 40^{\circ}$, y = 5 cm
- ⑤ $x = 45^{\circ}, y = 7cm$

 $\overline{\mathrm{DE}} /\!/ \overline{\mathrm{BC}}$ 이므로 $\angle x = \angle \mathrm{ADE} = 40^{\circ}$

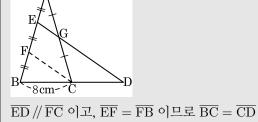
 $y = \frac{1}{2}\overline{BC} = 5(\text{cm})$

10. 다음 이등변삼각형 ABC 에서 $\overline{\text{CD}}$ 의 길이는? (단, $\overline{\text{AE}} = \frac{1}{2}\overline{\text{EB}}, \overline{\text{AG}} =$ $\overline{\mathrm{GC}}$)



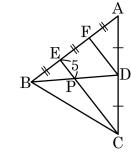
- ① 2cm
- ② 4cm
- \odot 6cm
- **4**8cm
- ⑤ 10cm

다음 그림과 같이 보조선을 그으면, $\overline{AE}=\overline{EF}=\overline{FB}$, $\overline{AG}=\overline{GC}$ 이므로, \overline{EG} $/\!/\overline{FC}$ 이다.



 $\therefore \overline{\mathrm{CD}} = 8\mathrm{cm}$

11. 다음 그림에서 \overline{AB} 의 3 등분점이 각각 E, F 이고, 점 D 는 \overline{AC} 의 중점이다. $\overline{EP}=5$ 일 때, \overline{EC} 와 \overline{PC} 의 길이의 합을 구하여라.



➢ 정답: 35

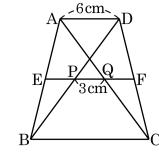
▶ 답:

 $\overline{\text{FD}} = 2\overline{\text{EP}} = 10$

 $\overline{CE} = 2\overline{DF} = 20$ $\overline{PC} = \overline{EC} - \overline{EP} = 20 - 5 = 15$

PC = EC - EP = 20 - 5 = 15 따라서 길이의 합은 20 + 15 = 35 이다.

12. 다음 그림은 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD 에서 점E 와 F 는 각각 \overline{AB} 와 \overline{DC} 의 중점이고, $\overline{AD}=6\mathrm{cm}$, $\overline{PQ}=3\mathrm{cm}$ 일 때, \overline{BC} 의 길이는?



① 8cm

해설

② 10cm

③12cm

④ 14cm

⑤ 15cm

 $\overline{AE}:\overline{AB}=1:2$ 이므로 $\overline{EP}=3\mathrm{cm}$ 이다. $\triangle ABC$ 에서 $\overline{EQ}=$

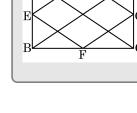
6cm, 6 : x = 1 : 2이므로 $x = 6 \times 2 = 12$ 이다.

- 13. 다음 중 직사각형의 각 변의 중점을 차례로 이어서 만든 사각형으로 가장 적당한 것은?
 - ① 등변사다리꼴 ② 평행사변형 ③ 직사각형

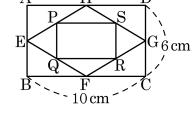
- ④ 마름모
 ⑤ 정사각형

다음 그림의 직사각형 ABCD 에서 대각선 AC 를 그으면 \triangle ABC 와 \triangle ADC 에서 삼각형의 중점연결 정리에 의하여 $\overline{\mathrm{EF}}=rac{1}{2}\overline{\mathrm{AC}},\overline{\mathrm{HG}}=rac{1}{2}\overline{\mathrm{AC}}$ 한편, 대각선 BD 를 그으면 $\triangle\mathrm{ABD}$ 와 $\Delta {
m CDB}$ 에서 삼각형의 중점연결 정리에 의하여 $\overline{
m EH}=rac{1}{2}\overline{
m BD}$,

 $\overline{\mathrm{FG}} = rac{1}{2}\overline{\mathrm{BD}}\ \overline{\mathrm{AC}} = \overline{\mathrm{BD}}$ 이므로 $\overline{\mathrm{EF}} = \overline{\mathrm{FG}} = \overline{\mathrm{GH}} = \overline{\mathrm{HE}}$ 따라서, □EFGH 는 네 변의 길이가 모두 같으므로 마름모이다.



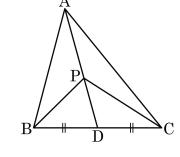
- 14. 다음 그림에서 □EFGH 는 직사각형 ABCD 의 각 변의 중점을 연결한 사각형이고, □PQRS는 □EFGH 의 각 변의 중점을 연결한 사각형이 다. $\Box PQRS$ 의 가로의 길이를 x, 세로의 길이를 y 라 할 때, x+y를 바르게 구한 것은?



① $5\,\mathrm{cm}$ ② $6\,\mathrm{cm}$ ③ $7\,\mathrm{cm}$ **4**8 cm ⑤ 9 cm

 $\overline{PQ} = \overline{SR} = \frac{1}{2}\overline{HF} = 3 \text{ (cm)}$ $\overline{PS} = \overline{QR} = \frac{1}{2}\overline{EG} = 5 \text{ (cm)}$ 3 + 5 = 8

15. 다음 그림에서 점 P 가, $\overline{\rm AD}$ 위의 점일 때, 다음 설명으로 옳은 것을 모두 고르면?



- ① \overline{AD} 는 $\triangle ABC$ 의 중선이다. ② $\triangle ABP = \frac{1}{3}\triangle ABC$
 - 3 $\boxed{3} \triangle PBD = \triangle PCD$
- $\bigcirc \triangle APB = \triangle APC$

높이가 같은 두 삼각형에서 밑변의 길이가 같으면 넓이도 같으

므로 $\triangle ABD = \triangle ACD$, $\triangle PBD = \triangle PCD$ 따라서 $\triangle APB = \triangle APC$

16. 다음 그림에서 $\triangle ABC$ 의 무게중심이 G이고 중선 AM의 길이가 18cm일 때, \overline{GM} 의 길이는?

①6cm

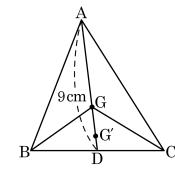
② 7cm ③ 8cm

④ 9cm

⑤ 10cm

점 G가 $\triangle ABC$ 의 무게중심이므로 $\overline{AG}:\overline{GM}=2:1$ $\therefore \overline{GM}=\frac{1}{3} \overline{AM}=\frac{1}{3} \times 18=6 \text{ (cm)}$

17. 다음 그림에서 점 G는 \triangle ABC의 무게중심이고 점 G'은 \triangle GBC의 무게중심이다. $\overline{\mathrm{AD}} = 9\mathrm{cm}$ 일 때, $\overline{\mathrm{G'D}}$ 의 길이는?



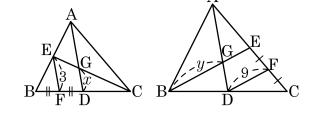
①1cm

② 3cm ③ 4cm ④ 5cm

⑤ 6cm

 $\overline{AG}: \overline{GD} = 2:1$ 이므로 $\overline{GD} = \frac{1}{3}\overline{AD} = \frac{1}{3} \times 9 = 3 \text{ (cm)}$ $\overline{GG'}: \overline{G'D} = 2:1$ 이므로 $\overline{G'D} = \frac{1}{3}\overline{GD} = \frac{1}{3} \times 3 = 1 \text{ (cm)}$

18. 다음 그림의 $\triangle ABC$ 에서 점 G는 $\triangle ABC$ 의 무게중심일 때, y-x를 구하여라.



답:▷ 정답: 10

해설 왼쪽 삼각형에서

BF = FD, AE = EB이므로

 $\overline{AD} = 2\overline{EF} = 6$

점 G가 무게중심이므로 $x = 6 \times \frac{1}{3} = 2$

오른쪽 삼각형에서 $\overline{AG}:\overline{GD}=2:1$ 이므로 $\overline{AG}:\overline{AD}=2:3$

 $2:3 = \overline{EG}:9$

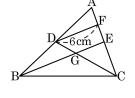
 $\overline{EG} = 6$

2:1=y:6

 $\therefore y = 12$

따라서 y - x = 12 - 2 = 10이다.

19. 다음 그림에서 점 G 는 $\triangle ABC$ 의 무게중심 이고 점 F 는 $\overline{\rm AE}$ 의 중점이다. $\overline{\rm DF}=6\,{
m cm}$ 일 때, $\overline{\mathrm{GE}}$ 의 길이를 구하여라.



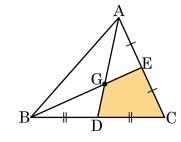
▷ 정답: 4<u>cm</u>

▶ 답:

 ΔABE 에서 점 D, F 는 각각 $\overline{AB},\ \overline{AE}$ 의 중점이므로 $\overline{BE}=2\overline{DF}=12\ (\mathrm{cm})$ $\overline{\mathrm{BE}}:\overline{\mathrm{GE}}=3:1$ 이므로 $\overline{\mathrm{GE}}=12 imesrac{1}{3}=4\ (\mathrm{\,cm})$

 $\underline{\mathrm{cm}}$

20. 다음 그림에서 점 G는 삼각형 ABC의 무게중심이다. □GDCE의 넓이가 20cm²일 때 △ABC의 넓이를 구하면?



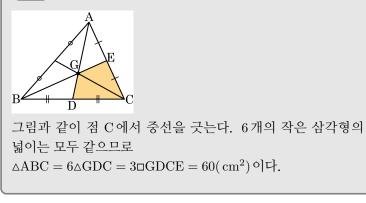
 490cm^2

 $\textcircled{1} \ 40 \mathrm{cm}^2$

 $\bigcirc 60 \text{cm}^2$ $\bigcirc 120 \text{cm}^2$

 $3 80 \text{cm}^2$

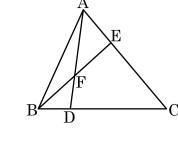
해설



- **21.** $\angle A$ 의 크기가 90 °인 $\triangle ABC$ 의 무게중심을 G라 하자. $\overline{AB}=10\,\mathrm{cm},$ $\overline{AC}=12\,\mathrm{cm}$ 일 때, $\triangle GBC$ 의 넓이를 구하면?
 - 10 cm G
 - ① 10 cm^2 ④ 40 cm^2
- 20 cm^2 60 cm^2
- 30 cm^2

 $\triangle GBC = \frac{1}{3}\triangle ABC = \frac{1}{3} \times \left(\frac{1}{2} \times 12 \times 10\right) = 20 (\text{ cm}^2)$

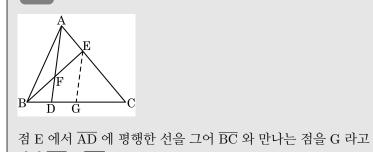
 ${f 22}$. 다음 그림과 같이 변 AC 의 삼등분 점 중 점 A 에 가까운 점을 E, \overline{BE} 의 중점을 F , 직선 AF 와 \overline{BC} 와의 교점을 D 라 할 때, $\triangle ABC$ 와 ΔABD 의 넓이의 비를 바르게 구한 것은?.



① 2::1 ② 3:1

34:1

④ 3:2 ⑤ 4:3



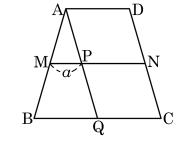
하면 $\overline{BD} = \overline{DG}$ $\overline{\mathrm{DG}}:\overline{\mathrm{GC}}=\overline{\mathrm{AE}}:\overline{\mathrm{EC}}=1:2$

 $\overline{\mathrm{BD}}:\overline{\mathrm{DC}}=1:3$

 $\overline{\mathrm{BC}}:\overline{\mathrm{DC}}=4:3$

 $\therefore \triangle ABC: \triangle ACD = 4:3, \ \triangle ABC: \triangle ABD = 4:1$

23. 다음 그림에서 $\overline{\rm AD}$ // $\overline{\rm MN}$ // $\overline{\rm BC}$ 인 사다리꼴 ABCD 에서 두 점 M, N 은 각각 $\overline{\rm AB}$, $\overline{\rm CD}$ 의 중점 일 때, $\overline{\rm BC}$ 의 길이를 a 를 사용하여 나타내면? (단, $\overline{\rm MP}$: $\overline{\rm PN}$ = 1 : 2)



① 3*a*

24a

③ 5a

④ 6a

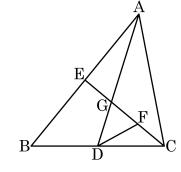
⑤ 7*a*

 $\overline{\mathrm{AM}}:\overline{\mathrm{AB}}=1:2$ 이므로 $\overline{\mathrm{QB}}=2a$ 이다.

 $\overline{\mathrm{MP}}:\overline{\mathrm{PN}}=1:2$ 이므로 $\overline{\mathrm{PN}}=2a,$ $\overline{\mathrm{AD}}=\overline{\mathrm{PN}}=\overline{\mathrm{QC}}$ 이므로 $\overline{\mathrm{QC}}=2a$ 이다.

AD = PN = QC 이르도 QC = 2a 이다. 따라서 $\overline{BC} = \overline{BQ} + \overline{QC} = 2a + 2a = 4a$ 이다.

24. 다음 그림에서 점 G 는 $\triangle ABC$ 의 무게중심이고, \overline{DF} 는 $\triangle CDG$ 의 중선이다. $\triangle GDF = 4cm^2$ 일 때, $\triangle ABC$ 의 넓이를 바르게 구한 것은?



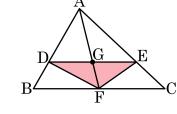
 48 cm^2 48 cm^2

② $60 \, \text{cm}^2$ ③ $96 \, \text{cm}^2$ $372 \,\mathrm{cm}^2$

해설

 $\triangle GDF = \frac{1}{2} \triangle GDC$ $= \frac{1}{2} \times \frac{1}{6} \triangle ABC$ $= \frac{1}{12} \triangle ABC$ $\therefore \triangle ABC = 12 \triangle GDF$ $= 12 \times 4$ $= 48 \text{ (cm}^2)$

25. 다음 그림의 $\triangle ABC$ 에서 점 G는 무게중심이고, \overline{DE} 와 \overline{BC} 는 평행이다. $\overline{BF}=4\mathrm{cm}, \overline{GF}=3\mathrm{cm}, \Delta ABC=54\mathrm{cm}^2$ 일 때, ΔDEF 의 넓이는?



- $\bigcirc 10 \mathrm{cm}^2$ $4 27 \text{cm}^2$
- $212 cm^2$ \bigcirc 30cm²
- $3 18 \text{cm}^2$

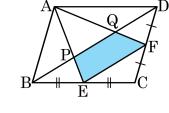
$$\Delta ACF = \frac{1}{2}\Delta ABC = 27 (\, cm^2)$$
 ΔACF 에서 $\overline{AE}: \overline{CE} = 2:1$ 이므로,

$$\triangle AEF = \frac{2}{3} \triangle ACF = 18 (\text{cm}^2)$$

ΔΑΕF에서
$$\overline{AG}: \overline{GF} = 2:1$$
이므로,

$$\triangle GFE = \frac{1}{3} \triangle AEF = 6(\text{ cm}^2)$$

 ${f 26}$. 다음 그림과 같이 평행사변형 ABCD 에서 E, F는 각각 $\overline{
m BC},\overline{
m DC}$ 의 중점이고, $\square ABCD$ 의 넓이는 $120 cm^2$ 이다. 이 때, $\square PEFQ$ 의 넓이를 구하면?



 \bigcirc 20cm² $40 \, \mathrm{cm}^2$ 25cm^2 \bigcirc 45cm²

 30cm^2

점 P 가 △ABC 의 무게중심이므로

해설

 $\overline{AP} : \overline{PE} = 2 : 1$ 이고 $\overline{\mathrm{PQ}}//\overline{\mathrm{EF}}$

⇒ △APQ ∽ △AEF (AA 닮음)

닮음비가 2 : 3 이므로 넓이의 비는

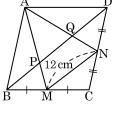
 $4:9\cdots$ ① 또, $\overline{BP} = \overline{PQ} = \overline{QD}$ 이므로

 $\triangle APQ = \frac{1}{6} \square ABCD = 20 \cdots$ 따라서 ①, ⓒ에서

△APQ : □PEFQ = 4 : 5 이므로

 $\Box \mathrm{PEFQ} = \frac{5}{4} \times 20 = 25 (\,\mathrm{cm^2})$ 이다.

 ${f 27}$. 다음 평행사변형 ABCD 에서 점 M, N 은 각 각 $\overline{\mathrm{BC}},$ $\overline{\mathrm{CD}}$ 의 중점이다. $\overline{\mathrm{MN}}=12\,\mathrm{cm}$ 일 때, \overline{PQ} 의 길이를 구하여라.



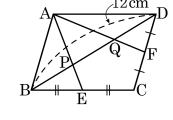
▶ 답: 정답: 8 cm

 $\underline{\mathrm{cm}}$

해설

점 P, Q 는 각각 \triangle ABC, \triangle ACD 의 무게중심이므로 $\overline{BP}=\overline{PQ}=\overline{QD}$ 이고 $\overline{BD}=2\overline{MN}=24\,\mathrm{cm}$ 이므로 따라서 $\overline{PQ} = \frac{1}{3}\overline{BD} = 8\,\mathrm{cm}$

28. 다음 그림과 같은 평행사변형 ABCD의 두 변 BC, CD의 중점을 각각 E, F라 하고, \overline{BD} 와 \overline{AE} , \overline{AF} 와의 교점을 각각 P, Q라 한다. $\overline{BD} = 12 \mathrm{cm}$ 일 때, \overline{PQ} 의 길이를 구하면?



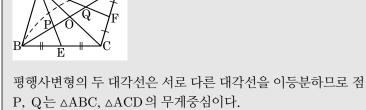
4cm

① 2cm

해설

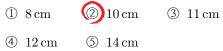
- ② 2.5cm ③ 5cm
- ③ 3cm

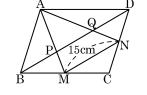
평행사변형의 대각선 \overline{AC} 를 그으면, \overline{AC}



 $\overline{\mathrm{BO}}=6\mathrm{cm}$ 이고, $\overline{\mathrm{BP}}:\overline{\mathrm{PO}}=2:1$ 이므로, $\overline{\mathrm{PO}}=2\mathrm{cm}$, 마찬가지로 $\overline{\mathrm{QO}}=2\mathrm{cm}$ 이다. 따라서 $\overline{\mathrm{PQ}}=4\mathrm{cm}$ 이다.

 ${f 29}$. 평행사변형 ABCD 에서 점 M, N 은 각각 $\overline{\mathrm{BC}},\ \overline{\mathrm{DC}}$ 의 중점이고 $\overline{\mathrm{MN}}=15\,\mathrm{cm}$ 일 때, \overline{PQ} 의 길이를 구하면?

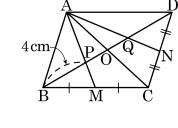




점 P, Q 는 각각 \triangle ABC, \triangle ACD 의 무게중심이므로 $\overline{BP}=\overline{PQ}=\overline{QD}$ 이고 $\overline{\mathrm{BD}} = 2\overline{\mathrm{MN}} = 30\,\mathrm{cm}$ 이므로

따라서 $\overline{PQ} = \frac{1}{3}\overline{BD} = 10\,\mathrm{cm}$

30. 다음 그림과 같은 평행사변형 ABCD 에서 점 M,N 은 각각 \overline{BC} , \overline{CD} 의 중점이다. $\overline{BP}=4\mathrm{cm}$ 일 때, \overline{BD} 의 길이는?



②12cm ① 11cm

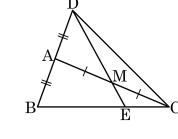
③ 13cm

④ 14cm

⑤ 15cm

 $\square ABCD$ 가 평행사변형이므로 $\overline{AO}=\overline{CO},\;\overline{BO}=\overline{DO}$, $\overline{BM}=$ $\overline{\mathrm{CM}}$ 이므로 점 P 는 $\Delta\mathrm{ABC}$ 의 무게중심이다. $\overline{\mathrm{PO}} = \frac{1}{2}\overline{\mathrm{BP}} =$ $rac{1}{2} imes 4 = 2 (\mathrm{cm})$ 이므로 $\overline{\mathrm{BO}} = \overline{\mathrm{BP}} + \overline{\mathrm{PO}} = 4 + 2 = 6 (\mathrm{cm})$ 이다. 따라서 $\overline{\mathrm{BO}}=\overline{\mathrm{DO}}$ 이므로 $\overline{\mathrm{BD}}=2\overline{\mathrm{BO}}=2\times 6=12(\mathrm{cm})$ 이다.

 ${f 31}$. 다음 그림의 ΔABC 에서 \overline{BA} 의 연장선 위에 $\overline{BA}=\overline{AD}$ 인 점 D 를 정하고, \overline{AC} 의 중점을 M , 점 D 와 M 을 지나 \overline{BC} 와 만나는 점을 E 라 한다. $\overline{\mathrm{DM}}=9$ 일 때, $\overline{\mathrm{ME}}$ 의 길이는?



① 5 ② 4.5

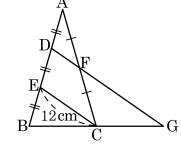
3 4

⑤ 2.5

점 A 에서 \overline{BC} 에 평행한 직선을 그어 \overline{DE} 와 만나는 점을 F 라 하면, $\triangle AFM \equiv \triangle CEM$ $\therefore \overline{FM} = \overline{ME}$ $\overline{DF} = \overline{FE} \circ \square \square \exists \overline{DF} : \overline{FM} = 2 : 1$

 $\therefore \overline{\mathrm{ME}} = \overline{\mathrm{FM}} = \overline{\mathrm{DM}} \times \frac{1}{3} = 9 \times \frac{1}{3} = 3$

32. 다음 그림과 같은 $\triangle ABC$ 에서 \overline{AB} 의 삼등분점을 D, E, \overline{AC} 의 중점을 F 라 하고 \overline{DF} 와 \overline{BC} 의 연장선의 교점을 G 라 하자. $\overline{EC}=12cm$ 일 때, \overline{FG} 의 길이는?



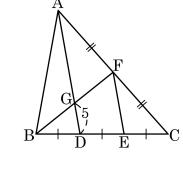
① 16cm ② 18cm ③ 20cm ④ 22cm ⑤ 24cm

 $\overline{AD}: \overline{AE} = \overline{DF}: \overline{EC}$ 이므로 $\overline{DF} = 6$ $\overline{BE}: \overline{BD} = \overline{EC}: \overline{DG}$ 이므로 $\overline{DG} = 24$

해설

 $\overline{FG} = \overline{DG} - \overline{DF} = 24 - 6 = 18(\text{ cm})$

33. 다음 그림의 $\triangle ABC$ 에서 점 F 는 \overline{AC} 의 중점이고, 점 D, E 는 \overline{BC} 를 삼등분하는 점이다. $\overline{GD}=5$ 일 때, \overline{AG} 의 길이는?



① 10 ② 14

<u>③</u>15

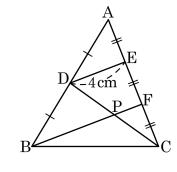
④ 18

⑤ 20

삼각형의 중점연결정리에 의해 $\overline{ ext{FE}} = 2 imes \overline{ ext{GD}} = 10$, $\overline{ ext{AD}} =$

2×〒E = 20 이므로 ∴ $\overline{AG} = \overline{AD} - \overline{GD} = 20 - 5 = 15$ 이다.

34. 다음 그림과 같은 $\triangle ABC$ 에서 점 D 는 \overline{AB} 의 중점이고, 점 E,F 는 \overline{AC} 를 삼등분하는 점이다. 점 P 가 \overline{BF} , \overline{CD} 의 교점이고, $\overline{DE}=4cm$ 일 때, \overline{BP} 의 길이는?



① 5cm

②6cm

③ 7cm

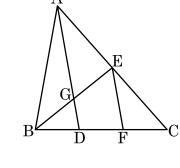
④ 8cm

⑤ 9cm

 $\triangle ABF$ 에서 $\overline{BF} = 2\overline{DE} = 2 \times 4 = 8 \text{ (cm)}$

 $\triangle \text{CDE}$ 에서 $\overline{\text{DE}} = 2\overline{\text{PF}}$ \therefore $\overline{\text{PF}} = 2 \text{ (cm)}$ \therefore $\overline{\text{BP}} = \overline{\text{BF}} - \overline{\text{PF}} = 8 - 2 = 6 \text{ (cm)}$ 이다.

35. $\triangle ABC$ 에서 \overline{AD} 와 \overline{BE} 는 중선이다. \overline{AD} # \overline{EF} 이고 $\overline{GD}=6\,\mathrm{cm}$ 일 때, \overline{EF} 의 길이를 구하여라.



 $\underline{\mathrm{cm}}$

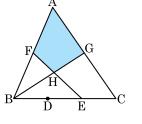
정답: 9 cm

▶ 답:

$$\overline{AG} = 2\overline{GD} = 12 \text{ (cm)}$$

$$\overline{EF} = \frac{1}{2}\overline{AD} = \frac{1}{2} \times (12 + 6) = 9 \text{ (cm)}$$

36. 다음 그림의 $\triangle ABC$ 에서 점 F, G 는 각각 \overline{AB} , \overline{AC} 의 중점이고, $\overline{BD} = \overline{DE} = \overline{EC}$ 이 다. $\triangle FBH = 8 \, \mathrm{cm}^2$ 일 때, $\Box AFHG$ 의 넓이 를 구하여라.



 $\underline{\rm cm^2}$ ▷ 정답: 20 cm²

답:

점 F, G 를 이으면 $\overline{\mathrm{FG}} = \frac{1}{2}\overline{\mathrm{BC}}$ $\triangle \mathrm{FHG} \circlearrowleft \triangle \mathrm{EHB}$ $\overline{\mathrm{FG}}:\overline{\mathrm{BE}}=3:4$

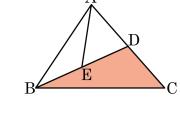
 $\triangle FHG: \triangle FBH = 3:4$

 $\triangle FHG = 6 \text{ (cm}^2\text{)}$

 $\overline{\mathrm{AF}} = \overline{\mathrm{BF}}$ 이므로 $\triangle AFG = \triangle GFB = 8 + 6 = 14 \text{ (cm}^2\text{)}$

 $\therefore \Box AFHG = 14 + 6 = 20 \text{ (cm}^2)$

37. 다음 그림의 $\triangle ABC$ 에서 $\overline{AD}=\overline{CD}$, $\overline{BE}=\overline{DE}$ 이다. $\triangle ABE=$ $17\,\mathrm{cm}^2$ 일 때, ΔBCD 의 넓이를 바르게 구한 것은?

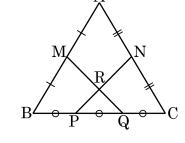


- 4 $33\,\mathrm{cm}^2$
- $34 \, \mathrm{cm}^2$
- $32\,\mathrm{cm}^2$

해설

 $\triangle ABE = \triangle AED = 17 \, (\, cm^2)$ 이고 $\triangle ABD = \triangle BCD$ 이므로 $\triangle BCD = 34 \, cm^2$ 이다.

 ${f 38}$. 다음 그림과 같이 ΔABC 에서 \overline{AB} 와 \overline{AC} 의 중점을 각각 M, N 이라 하고, \overline{BC} 의 삼등분점을 각각 P, Q , \overline{MQ} 와 \overline{NP} 의 교점을 R 이라 할 때, $\overline{\mathrm{MR}}:\overline{\mathrm{RQ}}=x:y$ 이다. x,y값을 차례대로 써라.



답:

답:

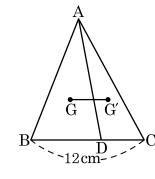
▷ 정답: 3

▷ 정답: 2

삼각형의 중점연결정리에 의해 $\overline{MN}//\overline{PQ}$ 이므로 $\Delta MRN \hookrightarrow \Delta QRP$ (AA닮음) 이다. $\overline{\mathrm{MN}}:\overline{\mathrm{PQ}}=\frac{1}{2}\ \overline{\mathrm{BC}}:\frac{1}{3}\ \overline{\mathrm{BC}}=3:2$

따라서 $\overline{\mathrm{MR}}$: $\overline{\mathrm{RQ}}$ = $\overline{\mathrm{MN}}$: $\overline{\mathrm{PQ}}$ = 3 : 2 = x : y이므로 x=3,y=2이다.

39. 다음 그림에서 점 G, G'은 각각 $\triangle ABD$, $\triangle ADC$ 의 무게중심이다. $\overline{BC}=12\mathrm{cm}$ 일 때, $\overline{GG'}$ 의 길이는?



① 1cm ② 2cm ③ 3cm ④ 4cm ⑤ 5cm

 \overline{AG} 와 $\overline{AG'}$ 의 연장선과 \overline{BC} 와의 교점을 각각 P,Q라고 하면 $\overline{BP} = \overline{PD}$, $\overline{DQ} = \overline{CQ}$ $\therefore \overline{PQ} = \frac{1}{2} \ \overline{BC} = 6 \ (cm)$ $\triangle AGG'$ 과 $\triangle APQ$ 에서 $\overline{AG'}: \overline{G'Q} = 2:1$, $\overline{AG}: \overline{GP} = 2:1$, $\angle A \vdash \overline{S} = 0$ 므로 $\triangle AGG' \hookrightarrow \triangle APQ$ $\overline{GG'}: \overline{PQ} = \overline{AG}: \overline{AP} = 2:3 \circ 1$ 므로 $\overline{GG'}: 6 = 2:3$ $3\overline{GG'} = 12$ $\therefore \overline{GG'} = 4 \ (cm)$

40. 다음 그림과 같이 $\angle B = \angle C$ 인 이등변삼각형 ABC 의 점 A 에서 변 BC 에 내린 수선의 발을 M 이라 하고, 삼각형 ABM, ACM 의 무게중심을 각각 G, G' 이라 할 때, 선분 GG' 의 길이는 6 이다. 이때 변 BC 의 길이를 구하여라.

B D M E C

▷ 정답: 18

02

답:

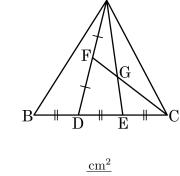
 $\overline{\mathrm{AG}}:\overline{\mathrm{GD}}=2:1$ 이므로 삼각형 AGG' 과 ADE 의 닮음비는

2:3 이다. $\overline{DE} = \frac{3}{2} \times 6 = 9$

또, G, G' 이 무게중심이므로 점 D, E 는 선분 BM, CM 의 중점

 $\overline{BC} = 2\overline{DE} = 18$

41. 다음 그림에서 점 D,E 는 \overline{BC} 의 삼등분 점이고, 점 F 는 \overline{AD} 의 중점 이다. $\triangle AFG = 5 \, \mathrm{cm}^2$ 일 때, $\triangle ABD$ 의 넓이를 구하여라.



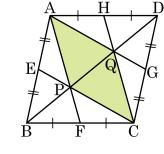
▷ 정답: 15<u>cm²</u>

▶ 답:

해설

점 G 는 \triangle ADC 의 무게중심이다.

42. 다음 그림과 같은 평행사변형 ABCD 에서 \overline{AB} , \overline{BC} 의 중점을 각각 E, F, 대각선 \overline{BD} 와 \overline{EC} , \overline{AG} 와의 교점을 각각 P, Q 라 하고 ΔBFP 의 넓이가 7cm^2 일 때, 사각형 APCQ 의 넓이는?



- ① 28cm^2 ④ 44cm^2
- ② 36cm² ⑤ 48cm²
- $3 40 \text{cm}^2$

