1.
$$x$$
에 대한 이차방정식 $kx^2 + 2(k+1)x + k = 0$ 이 중근을 가질 때 k 의 값은?

$$\frac{D}{4} = b'^2 - ac = (k+1)^2 - k^2 = 2k + 1 에서$$
중근을 가질 조건이므로
$$\frac{D}{4} = 0 \text{ 이어야 한다.}$$

$$2k + 1 = 0 \qquad \therefore k = -\frac{1}{2}$$

2. 이차방정식 $x^2 + 2x + 2 - a = 0$ 이 서로 다른 두 실근을 갖기 위한 a 의 범위를 구하면?

①
$$a < 1$$
 ② $a \ge 1$ ③ $-1 < a < 1$ ④ $a > 1$

해설
$$x^{2} + 2x + 2 - a = 0$$
이 서로 다른 두 실근을 갖기 위해서는 판별식 $D > 0$ 이어야 한다.
$$\frac{D}{4} = 1 - (2 - a) > 0$$

1 - 2 + a > 0 $\therefore a > 1$

3. 계수가 실수인 x에 대한 이차방정식 $x^2 + 2(a-m-1)x + a^2 - b + m^2 = 0$ 의 근이 m의 값에 관계없이 항상 중근을 갖도록 하는 a,b값의 합은?

해설
$$\frac{D}{4} = (a-m-1)^2 - (a^2 - b + m^2) = 0$$
 m 의 값에 관계없이
$$2(-a+1)m + (-2a+b+1) = 0$$
 이어야 하므로
$$2(-a+1) = 0, -2a+b+1 = 0$$

a = 1, b = 1a + b = 2

4. 이차식
$$2x^2 - 4x + 3$$
 을 복소수 범위에서 인수분해하면?

$$2\left(x-1-\frac{\sqrt{2}i}{2}\right)\left(x-1+\frac{\sqrt{2}i}{2}\right)$$

$$(x+3)(2x-1)$$

$$4 2\left(x+1-\frac{\sqrt{2}i}{2}\right)\left(x-1+\frac{\sqrt{2}i}{2}\right)$$

$$3 2\left(x-1-\frac{\sqrt{2}i}{2}\right)\left(x+1+\frac{\sqrt{2}i}{2}\right)$$

$$a = 2, b' = -2, c = 3$$

$$x = \frac{2 \pm \sqrt{4 - 6}}{2} = \frac{2 \pm \sqrt{2}i}{2} = 1 \pm \frac{\sqrt{2}}{2}i$$

$$\therefore 2\left(x - 1 - \frac{\sqrt{2}}{2}i\right)\left(x - 1 + \frac{\sqrt{2}}{2}i\right)$$

5. 계수가 유리수인 이차방정식 $x^2 - ax + b = 0$ 의 한 근이 $2 + \sqrt{3}$ 일 때, ab 의 값은?

① -3 ② 0 ③ 2

 $3 \ 2 + 2\sqrt{3}$

유리계수이므로 다른 한 근은 $2 - \sqrt{3}$ 근과 계수와의 관계에 의해 a = 4, b = 1

 $\therefore ab = 4$

해설

해설

 $x^2 + ax + b = 0$ 에 $x = 2 + \sqrt{3}$ 대입 $(2 + \sqrt{3})^2 - a \cdot (2 + \sqrt{3}) + b = 0$ 계수가 유리수이므로

 $\sqrt{3} \cdot (4-a) + (b-2a+7) = 0$

a = 4, b = 1

 $\therefore ab = 4$

6. 다음 보기는 방정식 (ax - 1)a = x - 1의 해에 대한 설명이다. 옳은 것을 모두 고르면?

보기

 \bigcirc a = -1 이면 해가 없다.

 \bigcirc a=1 이면 오직 하나의 해를 갖는다.

 \bigcirc $a \neq \pm 1$ 이 아니면 해는 무수히 많다.

2 (

③ ①, ©

④ □, □

(5) (7), (L), (E)

해설

(ax-1)a = x-1 old $(a^2-1)x = a-1$

(a-1)(a+1)x = a-1

① a = -1 이면 $0 \cdot x = -2$ 이므로 해가 없다. ② a = 1 이면 $0 \cdot x = 0$ 이므로 해는 무수히 많다.

© $a \neq \pm 1$ 이면 $x = \frac{1}{a+1}$

따라서 옳은 것은 ⊙뿐이다.

7. 이차방정식 $(\sqrt{2}-1)x^2 - (3-\sqrt{2})x + \sqrt{2} = 0$ 의 두 그은?

① $\sqrt{2}$, $1 + \sqrt{2}$ ② $-\sqrt{2}$, $1 + \sqrt{2}$ ③ $\sqrt{2}$, $1 - \sqrt{2}$

 $(4) - \sqrt{2}, -1 - \sqrt{2}$ $(5) \sqrt{2}, -1 + \sqrt{2}$

해설

양변에 $\sqrt{2} + 1$ 을 곱하면 $x^2 - (2\sqrt{2} + 1)x + \sqrt{2}(\sqrt{2} + 1) = 0$

$$(x - \sqrt{2}) \left\{ x - (\sqrt{2} + 1) \right\} = 0$$

$$\therefore x = \sqrt{2}, \sqrt{2} + 1$$

해설

 $x^2-(2\sqrt{2}+1)x+\sqrt{2}(\sqrt{2}+1)=0$ 로 고친 후 근의 공식을 이용하여 풀어도 좋다.

8. 이차방정식 $x^2 - 5x + p = 0$ 의 두 근은 $3, \alpha$ 이고 $x^2 - px + q = 0$ 의 두 근은 α, β 이다. 이 때 β 의 값은?(단 p, q는 상수)

이차방정식
$$x^2 - 5x + p = 0$$
에서
근과 계수의 관계에 의해
두 근의 합: $3 + \alpha = 5$ $\therefore \alpha = 2$
두 근의 곱: $3 \cdot \alpha = p = 3 \cdot 2 = 6$
이차방정식 $x^2 - 6x + q = 0$ 의 두 근이 $2, \beta$ 이므로 $2 + \beta = 6$ $\therefore \beta = 4$

9. 0 이 아닌 두 실수 a,b에 대하여 $\frac{\sqrt{b}}{\sqrt{a}} = -\sqrt{\frac{b}{a}}$ 가 성립할 때, <보기> 의 방정식 중 항상 실근이 존재하는 것을 모두 고른 것은?

①
$$x^2 + ax + b = 0$$

② $x^2 + bx + a = 0$
② $ax^2 + x + b = 0$
② $bx^2 + ax + b = 0$

(a) $bx^2 + ax + b = 0$

$$\frac{\sqrt{b}}{\sqrt{a}}=-\sqrt{\frac{b}{a}} \text{ 이 만족하려면 } b>0, a<0$$
 ① $x^2+ax+b=0,\ D=a^2-4b$ $b\leq \frac{a^2}{4}$ 일 때만 실근 존재

D = 1 - 4ab > 0 항상 실근 존재 (\bigcirc)

 $D = b^2 - 4a > 0$ 항상 실근 존재 (\bigcirc)

 $\bigcirc x^2 + bx + a = 0$

 $\bigcirc ax^2 + x + b = 0$

 $D = a^2 - 4b^2$. $a^2 \ge 4b^2$ 일 때만 실근 존재

10. 이차방정식 $2x^2 - 4x - 3k = 0$ 이 허근을 갖고, 동시에 $x^2 + 5x - 2k = 0$ 이 실근을 갖도록 하는 정수 k의 개수를 구하면?

해설
$$2x^2 - 4x - 3k = 0 \text{ 이 허근을 가질 조건은}$$

$$\frac{D}{4} = 4 + 6k < 0$$

$$\therefore k < -\frac{2}{3} \quad \dots \quad \bigcirc$$

$$x^2 + 5x - 2k = 0 \text{ 이 실근을 가질 조건은}$$

$$D = 25 + 8k \ge 0$$

$$\therefore k \ge -\frac{25}{8} \quad \dots \quad \square$$

 \bigcirc , \bigcirc \bigcirc \land \downarrow $= \frac{25}{8} \le k < -\frac{2}{3}$

따라서, 정수
$$k = -3$$
, -2 , -1
∴ 정수 k 의 개수는 3개

11.
$$a^2 - 3a + 1 = 0$$
일 때, $a^2 - 2a + \frac{3}{a^2 + 1}$ 의 값은?

$$a+1=0$$
에

$$a^2 - 3a + 1 = 0$$
 에서
$$a^2 - 2a + \frac{3}{a^2 + 1} = a - 1 + \frac{3}{3a} = a + \frac{1}{a} - 1$$

$$\frac{3}{+1} = a - 1$$

한편,
$$a^2 - 3a + 1 = 0$$
의 양변을 a 로 나누면 $a - 3 + \frac{1}{a} = 0$ $\therefore a + \frac{1}{a} = 3$

$$\therefore (\frac{2}{4}) = \left(a + \frac{1}{a} \right) - 1 = 2$$

이차방정식 $x^2 + ax + b = 0$ 의 두 근을 α , β 라 할 때, $\alpha + \frac{1}{\beta}$, $\beta + \frac{1}{\alpha}$ 을 두 근으로 하는 x의 이차방정식이 $x^2 + ax + b = 0$ 과 같다. a, b의

값을 구하면?

①
$$a = 3, b = -2$$
 ② $a = 0, b = -\frac{1}{2}$ ③ $a = \frac{1}{3}, b = -\frac{1}{3}$ ④ $a = 2, b = -\frac{1}{4}$ ⑤ $a = 1, b = \frac{1}{2}$

해설
$$x^{2} + ax + b = 0$$
의 두 근이 α , β 이므로
$$\alpha + \beta = -a \cdot \cdots \cdot 0$$

$$\alpha\beta = b \cdot \cdots \cdot 0$$

$$\alpha + \frac{1}{\beta}, \beta + \frac{1}{\alpha} \stackrel{\triangle}{=} 두 근으로 하는 이차방정식이 $x^{2} + ax + b = 0$ 이므로
$$\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right) = -a \cdot \cdots \cdot 0$$$$

$$\left(\alpha + \frac{1}{\beta}\right) \times \left(\beta + \frac{1}{\alpha}\right) = b \cdot \dots \quad \textcircled{4}$$

$$\textcircled{3} \quad \Rightarrow \quad \alpha + \beta + \frac{\alpha + \beta}{\alpha \beta} = -a$$

$$\therefore -a + \frac{-a}{b} = -a \qquad \therefore -\frac{a}{b} = 0 \qquad \therefore a = 0$$

$$\textcircled{4} \text{ on } \alpha\beta + \frac{1}{\alpha\beta} + 2 = b, \quad b + \frac{1}{b} + 2 = b,$$

$$\frac{1}{b} + 2 = 0 \qquad \therefore \ b = -\frac{1}{2}$$

$$\frac{-b}{b} + 2 = 0 \qquad \therefore b = -\frac{1}{2}$$
$$\therefore a = 0, b = -\frac{1}{2}$$

(⑤)
$$x^2 - 2x - 4 = 0$$
 (⑤) $x^2 - 2x - 4 = 0$ (⑥) $x^2 - 2x - 4 = 0$ 이 두 군이 α , β 이고 $f(x) = ax^2 + bx + c$ 라 하면 $ax^2 + bx + c = 3$ 에서 $ax^2 + bx + c - 3 = 0$ $\therefore -\frac{b}{a} = \alpha + \beta = 2$ 또, $\frac{c-3}{a} = \alpha\beta = -4$ $f(1) = a + b + c = -2$ 이므로 $a = -b - c - 2$, $b = -2a$ 에서 $b = -2(-b - c - 2) = 2b + 2c + 4$ $\therefore b + 2c + 4 = 0$ $c - 3 = -4a$ 에서 $c = -4(-b - c - 2) + 3 = 4b + 4c + 11$ 연립하여 풀면 $c = -1$, $b = -2$, $a = 1$ $\therefore f(x) = x^2 - 2x - 1$

14.
$$x^2 - 3x + 1 = 0$$
의 두 근을 α, β 라 하고, $g(x) = x^3 - x^2 - 3x + 3$ 라 할 때, $g(\alpha) \cdot g(\beta)$ 의 값은?

근과 계수와의 관계에서
$$\alpha + \beta = 3$$
, $\alpha\beta = 1$
또, $g(x) = x^3 - x^2 - 3x + 3$
= $(x^2 - 3x + 1)(x + 2) + 2x + 1$

$$\alpha, \beta = x^2 - 3x + 1 = 0$$
의 근이므로 $g(\alpha) = 2\alpha + 1, g(\beta) = 2\beta + 1$

$$g(\alpha) = 2\alpha + 1, \ g(\beta) = 2\beta + 1$$

$$\therefore \ g(\alpha)g(\beta) = (2\alpha + 1)(2\beta + 1)$$

$$= 4\alpha\beta + 2(\alpha + \beta) + 1$$

= 4 + 6 + 1 = 11

15. 사차방정식 $x^4 + (2k+1)x^2 + k^2 - 5 = 0$ 이 서로 다른 두 개의 실근과 서로 다른 두 개의 허근을 갖도록 실수 k의 값을 정할 때, k의 최대 정수값 M과 k의 최소 정수값 m의 곱 $M \cdot m$ 을 구하면?

해설
$$x^2 = t \text{ 로 놓으면 주어진 사차방정식은}$$

$$t^2 + (2k+1)t + k^2 - 5 = 0 \cdots \text{①}$$
 사차방정식이 서로 다른 두 실근과 서로 다른 두 허근을 가지려면 방정식 ①이 서로 다른 부호의 실근을 가져야 하므로 두 근의 곱: $k^2 - 5 < 0$
$$\therefore -\sqrt{5} < k < \sqrt{5} \in 2.236\cdots)$$

M = 2, m = -2 $M \cdot m = -4$