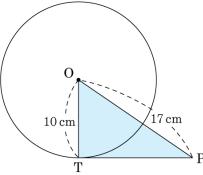

1. 다음 그림에서 x 의 값은?

- ① $7 + 8\sqrt{2}$ ② $7 + 8\sqrt{3}$ ③ $8 + 8\sqrt{2}$ ④ $8 + 8\sqrt{3}$ ⑤ $9 + 8\sqrt{2}$

$$\overline{DC} = \overline{AD} = 16 \sin 60^{\circ} = 16$$

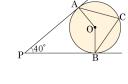

$$\overline{DC} = \overline{AD} = 16 \sin 60^{\circ} = 16$$

$$\overline{\overline{BD}} = 16\cos 60^{\circ} = 16 \times \frac{1}{2} = 8$$

$$\overline{\overline{DC}} = \overline{\overline{AD}} = 16\sin 60^{\circ} = 16 \times \frac{\sqrt{3}}{2} = 8\sqrt{3}$$

$$\therefore x = \overline{\overline{BD}} + \overline{\overline{CD}} = 8 + 8\sqrt{3}$$

2. 다음은 반지름이 10 cm 인 원
O 와 PT 가 원 O 에 접하고
PO 의 길이가 17 cm 인 삼각
형 POT 를 그린 것이다. 삼
각형 POT 의 넓이는?


- ① $10\sqrt{21} \text{ cm}^2$ ④ $13\sqrt{21} \text{ cm}^2$
- ② $11\sqrt{21} \text{ cm}^2$ ③ $15\sqrt{21} \text{ cm}^2$
- $3 12 \sqrt{21} \, \text{cm}^2$

∠PTO = 90°이므로

 $\overline{PT} = \sqrt{17^2 - 10^2} = \sqrt{189} = 3\sqrt{21}$ (cm) 따라서 $\triangle POT$ 의 넓이는

 $\frac{1}{2} \times 3\sqrt{21} \times 10 = 15\sqrt{21} \text{ (cm}^2)$ 이다.

3. 다음 그림에서 \overline{PA} , \overline{PB} 는 원 O 의 접선이고 $\angle APB = 40^\circ$ 일 때, $\angle ACB$ 의 크기는?

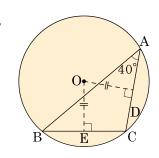
① 65° ② 70° ③ 75° ④ 80° ⑤ 85°

 $\angle PAO = \angle PBO = 90^{\circ}, \ \angle AOB = 140^{\circ}$ $\therefore \ \angle ACB = \frac{1}{2} \times \angle AOB = \frac{1}{2} \times 140^{\circ} = 70^{\circ}$

- 4. 다음 설명 중 옳지 <u>않은</u> 것은? (단, $0^{\circ} \le A \le 90^{\circ}$)
 - ① A의 값이 커지면 $\tan A$ 의 값도 커진다. ②A의 값이 커지면 $\cos A$ 의 값도 커진다.
 - ③ A의 값이 커지면 sin A의 값도 커진다.
 - ④ $\sin A$ 의 최댓값은 1, 최솟값은 0이다.
 - ⑤ tan 90°의 값은 정할 수 없다.

 $\angle A$ 의 크기가 커질수록 $\sin A$, $\tan A$ 의 값은 커지고 $\cos A$ 의 값은 작아진다.

- 5. 다음 한 원과 직선에 대한 설명 중 잘못된 것은?
 - ① 크기가 같은 두 중심각에 대한 현의 길이와 호의 길이는 각각 같다.② 중심에서 현에 내린 수선은 그 현을 이등분한다.

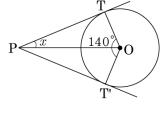

 - ③ 길이가 같은 현은 원의 중심에서 같은 거리에 있다.④ 중심으로부터 같은 거리에 있는 현의 길이는 같다.
 - ⑤ 현의 이등분선은 그 원의 중심을 지난다.

이등분선이 그 현의 수직이등분선일 때, 원의 중심을 지날 수

해설

있다.

다음 그림의 원 O 에서 $\overline{\mathrm{OD}} = \overline{\mathrm{OE}}$, 6. ∠CAB = 40°일 때, ∠ACB 의 크기는?

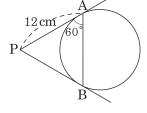

① 50° ② 55° ③ 80° ④ 95°

⑤100°

해설 중심에서 현에 내린 수선의 길이가 같으므로

 $\overline{\mathrm{AC}} = \overline{\mathrm{BC}}$, 따라서 $\Delta \mathrm{ABC}$ 는 이등변삼각형 $\therefore x = 180^{\circ} - 40^{\circ} \times 2 = 100^{\circ}$

7. 다음 그림에서 직선 PT, PT'은 원 O의 접선이고, ZTOT' = 140°일 때, ZTPO의 크기는?


⑤ 40°

① 10° ② 20° ③ 30° ④ 35°

 $\triangle POT \equiv \triangle POT \cdot (RHS \ \text{합동})$ $\therefore x = \frac{1}{2} (180 \,^{\circ} - 140 \,^{\circ}) = 20 \,^{\circ}$

2 `

다음 그림에서 직선 $\overline{\mathrm{PA}},\ \overline{\mathrm{PB}}$ 는 원의 접선 이고 점A, B 는 접점이다. $\angle PAB = 60^{\circ}$ 일 때, $\overline{\mathrm{AB}}$ 의 길이는?

① $12\sqrt{3}$ cm ④ 9cm

② $6\sqrt{3}$ cm ⑤12cm

③ 6cm

8.

 $\overline{\mathrm{PA}} = \overline{\mathrm{PB}}$ 이므로 $\Delta \mathrm{ABC}$ 는 이등변삼각형이다. 그런데 $\angle \mathrm{PAB} =$

해설

 $60\,^{\circ}$ 인 이등변삼각형은 정삼각형이므로 $\overline{\mathrm{AB}}=12\mathrm{cm}$ 이다.

- 9. $0^{\circ} < x < 90^{\circ}$ 에 대하여 $\cos(2x 10^{\circ}) = \frac{\sqrt{3}}{2}$ 을 만족하는 x 의 크기는?
 - ① 15° ② 20° ③ 25° ④ 30° ⑤ 35°

3x - 10° = 30° 이다. ∴ x = 20° 에서 대각선 BD 와 AC 의 교점을 P 라 한다. ∠BCD = 60°, ĀD = 6cm, $\overline{AB} = 4$ cm 일 때, $\triangle APD$ 의 넓이는?

10. 다음 그림과 같은 평행사변형 ABCD

_--- 6 cm ---D 4 cm

 $3\sqrt{3}$ cm²

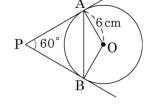
① $\sqrt{3}$ cm² $4\sqrt{3}$ cm²

해설

- $2\sqrt{3}$ cm² $\bigcirc 5\sqrt{3} \text{cm}^2$
- $\triangle APD = \frac{1}{4} \times \Box ABCD$ $= \frac{1}{4} \times 4 \times 6 \times \sin 60^{\circ}$ $= 6 \times \frac{\sqrt{3}}{2}$ $= 3\sqrt{3}(\text{cm}^{2})$

- 11. 다음 그림에서 \overline{PA} , \overline{PB} 는 반지름의 길 이가 $3 \mathrm{cm}$ 인 원 O 의 접선이다. 이 때, 색칠한 부분의 넓이는?
- $P \checkmark 40^{\circ}$
- $4.5\pi \text{cm}^2$

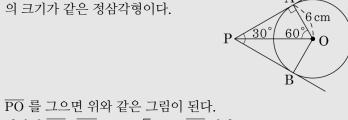
① $4\pi \text{cm}^2$


- ② $5.5\pi \text{cm}^2$ \bigcirc $12\pi\mathrm{cm}^2$

 $3 6\pi \text{cm}^2$

□OAPB 에서 ∠AOB 는 140° 이다.

따라서 색칠한 부분의 ∠AOB = 220°이다. 색칠한 부분의 넓이는 $\pi \times 3^2 \times \frac{220\,^{\circ}}{360\,^{\circ}} = \frac{11}{2}\pi = 5.5\pi (\,\mathrm{cm}^2)$ 이다.


12. 다음 그림에서 \overline{PA} , \overline{PB} 는 원 O 의 접선이 다. $\angle P = 60^{\circ}$, $\overline{OA} = 6 \mathrm{cm}$ 일 때, $\triangle ABP$ 의 넓이는?

- $40\sqrt{3}$ cm²
- $27\sqrt{3}$ cm² \bigcirc 54cm²
- $3 12 \sqrt{6} \text{cm}^2$

해설 $\overline{\mathrm{PA}} = \overline{\mathrm{PB}}$ 이므로 $\triangle \mathrm{ABP}$ 는 모든 각

의 크기가 같은 정삼각형이다.

따라서 $\overline{\mathrm{PA}}:\overline{\mathrm{AO}}=1:\sqrt{3}=6:\overline{\mathrm{PA}}$ 이다. $\therefore \overline{PA} = 6\sqrt{3} \text{ cm}, \ \frac{\sqrt{3}}{4} \times (6\sqrt{3})^2 = 27\sqrt{3} (\text{cm}^2)$

13. 다음 중 옳은 것은?

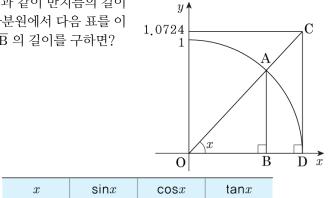
- ① $\sin 30^{\circ} \sin 60^{\circ} = \frac{\sqrt{2} \sqrt{3}}{2}$
- ② $\cos 30^{\circ} \times \tan 30^{\circ} + \sin 60^{\circ} \times \tan 30^{\circ} = 2$
- $\Im \frac{\cos 60^{\circ}}{\sin 30^{\circ}} = \sqrt{3}$

- $\textcircled{1} \sin 30^{\circ} \sin 60^{\circ} = \frac{1-\sqrt{3}}{2}$
- ② $\cos 30^{\circ} \times \tan 30^{\circ} + \sin 60^{\circ} \times \tan 30^{\circ} = 1$ ③ $\frac{\cos 60^{\circ}}{\sin 30^{\circ}} = 1$

14. 다음 그림의 부채꼴 APR는 반지름의 길이가 1 이고 중심각의 크기가 90° 이다. 빗금친 부분의 넓이는?

- ① $\frac{\sqrt{3}}{8}$ ② $\frac{\sqrt{3}}{4}$ ③ $\frac{3\sqrt{3}}{8}$ ④ $\frac{\sqrt{3}}{2}$ ⑤ $\frac{5\sqrt{3}}{8}$

 $\triangle ABC$ 에서 $\overline{AC}=1, \angle A=60^\circ$ 이므로 $\overline{AB}=\cos 60^\circ=rac{1}{2}$, $\overline{BC} = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$


 $\triangle APQ$ 에서 $\overline{AP}=1, \angle A=60^\circ$ 이므로 $\overline{AQ}=\frac{1}{\cos 60^\circ}=\frac{1}{\frac{1}{2}}=2$, $\overline{PQ}=\tan 60^\circ=\sqrt{3}$ (빗금친 부분의 넓이)= $\triangle APQ$ 의 넓이- $\triangle ABC$ 의 넓이

 $\triangle APQ$ 의 넓이= $\frac{1}{2} \times (1 \times \sqrt{3}) = \frac{\sqrt{3}}{2}$ $\triangle ABC$ 의 넓이= $\frac{1}{2} \times \left(\frac{1}{2} \times \frac{\sqrt{3}}{2}\right) = \frac{\sqrt{3}}{8}$

 \therefore (빗급친 부분의 넓이)= $\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{8} = \frac{3\sqrt{3}}{8}$

15. 다음 그림과 같이 반지름의 길이 다음 그림과 같이 먼지ㅁㅋ 로 가 1 인 사분원에서 다음 표를 이 고등 시 기이르 구하며? 1.0724

용하여 $\overline{\mathrm{OB}}$ 의 길이를 구하면?

43° 0.6820 0.73 44° 0.6947 0.73	314 0.9325
44° 0 6947 0 71	
0.0041 0.11	193 0.9657
45° 0.7071 0.70	071 1.0000
46° 0.7193 0.69	947 1.0355
47° 0.7314 0.68	821 1.0724

① 0.6821 ② 0.6947 ③ 0.7193 ④ 0.7314 ⑤ 0.9325

기 $\tan x = \frac{\overline{CD}}{\overline{OD}} = \frac{\overline{CD}}{1} = 1.0724$ $\therefore x = 47^{\circ}$ 2) $\cos x = \frac{\overline{OB}}{\overline{AO}} = \frac{\overline{OB}}{1} = \cos 47^{\circ} = 0.6821$