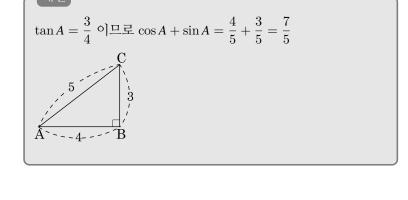
1. $\tan A = \frac{12}{5}$ 일 때, $\sin^2 A - \cos^2 A$ 의 값을 구하여라. (단, $0^\circ < A < 90^\circ$)


▶ 답:

 ▷ 정답:
 \frac{119}{169}

 $\tan A = \frac{12}{5}$ 이므로 $\frac{13}{12}$ $\sin^2 A - \cos^2 A = \left(\frac{12}{13}\right)^2 - \left(\frac{5}{13}\right)^2$ $= \frac{144}{169} - \frac{25}{169} = \frac{119}{169}$

- $\tan A = \frac{3}{4}$ 일 때, $\cos A + \sin A$ 의 값을 구하여라. (단, $0^\circ < A < 90^\circ$)

ightharpoonup 정답: $rac{7}{5}$

 $\tan A=1$ 일 때, $(2+\sin A)(2-\cos A)$ 의 값은? (단, $0^{\circ} \le A \le 90^{\circ})$ 3.

 $\bigcirc \frac{7}{2}$ ② $\frac{5}{2}$ ③ $\frac{3}{2}$ ④ $\frac{1}{2}$ ⑤ 0

 $\tan 45^{\circ} = 1$ 이므로 $\angle A = 45^{\circ}$ $(2 + \sin 45^{\circ})(2 - \cos 45^{\circ})$

$$= \left(2 + \frac{\sqrt{2}}{2}\right) \left(2 - \frac{\sqrt{2}}{2}\right) =$$

$$= \left(2 + \frac{\sqrt{2}}{2}\right) \left(2 - \frac{\sqrt{2}}{2}\right) = 4 - \frac{1}{2} = \frac{7}{2}$$

4. $\sin^2 x = \cos x$ 일 때, $\frac{1}{1 - \cos x} - \frac{1}{1 + \cos x}$ 의 값을 구하여라.

답:

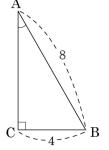
▷ 정답: 2

 $\frac{1}{1 - \cos x} - \frac{1}{1 + \cos x}$ $= \frac{1 + \cos x - (1 - \cos x)}{1 - \cos^2 x}$ $= \frac{2 \cos x}{\sin^2 x}$ $= \frac{2 \cos x}{\cos x} \quad (\because \sin^2 x = \cos x)$ = 2

다음과 같은 직각삼각형 $\triangle ABC$ 에서 $\overline{AB}=8$, **5.** BC = 4일 때, sinA - tan A의 값은?

$$0.000 = 4.5 \text{ m/s}$$

$$0.000 = 1 - \sqrt{3}$$


$$0.000 = 2 - 1$$

$$\frac{2}{6}$$

①
$$\frac{1-\sqrt{3}}{6}$$
 ② $\frac{2-\sqrt{3}}{6}$ ③ $\frac{2-2\sqrt{2}}{6}$ ④ $\frac{3-2\sqrt{2}}{6}$

$$\frac{1}{\Delta C}$$

$$\sin A = \frac{4}{3} = \frac{1}{3} \quad \tan A = \frac{4}{3} = \frac{\sqrt{3}}{3}$$

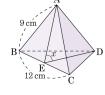
$$\overline{AC} = \sqrt{8^2 - 4^2} = \sqrt{64 - 16} = \sqrt{48} = 4\sqrt{3}$$

$$\sin A = \frac{4}{8} = \frac{1}{2}, \ \tan A = \frac{4}{4\sqrt{3}} = \frac{\sqrt{3}}{3}$$

$$\therefore \sin A - \tan A = \frac{1}{2} - \frac{\sqrt{3}}{3} = \frac{3 - 2\sqrt{3}}{6}$$

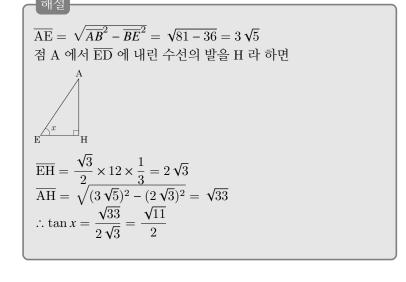
$$\therefore \sin A - \tan A = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$$

정사면체 O – ABC 에서 모서리 AB 의 중점을 M , \angle OMC = α 라 할 6. 때, $\cos \alpha$ 의 값을 구하여라.

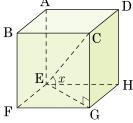

▶ 답:

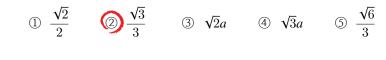
ightharpoonup 정답: $rac{1}{3}$

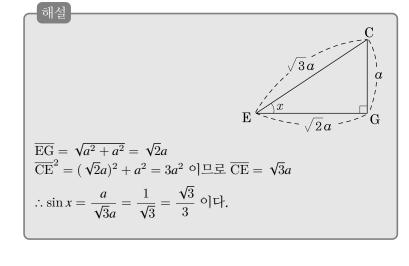
정사면체의 한 모서리의 길이를 x 라 하면 $\overline{\rm OM}=\frac{\sqrt{3}}{2}x$ 또 꼭짓점 O 에서 밑면에 내린 수선의 발을 H 라 하면 H 는 밑면의 무게중심이므로 $\overline{\rm MH} = \frac{1}{3} \times \frac{\sqrt{3}}{2} x = \frac{\sqrt{3}}{6} x$

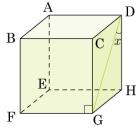

따라서
$$\cos \alpha = \frac{\frac{\sqrt{3}}{6}x}{\frac{\sqrt{3}}{2}x} = \frac{1}{3}$$
 이다.

7. 다음 그림의 삼각뿔은 옆면이 모두 합동인 이등변삼각형이고 밑면은 한 변의 길이가 12 인 정삼각형이다. 모서리 BC 의 중점을 E 라 하고, $\angle AED = x$ 일 때, $\tan x$ 의 값을 구하여라.




▶ 답:


ightharpoonup 정답: $rac{\sqrt{11}}{2}$


8. 다음 그림은 한 변의 길이가 *a* 인 정육면체이다. 대각선 CE 와 밑면의 대각선 EG 가이루는 ∠CEG 의 크기를 *x* 라할 때, sin *x* 의 값은?

9. 다음 그림과 같은 한 변의 길이가 2 인 정육면체에서 $\angle GDH$ 가 x 일 때, $\cos x$ 의 값이 $\frac{\sqrt{a}}{b}$ 이다. 이때, a+b의 값을 구하시오.(단, a, b는 유리수)

 ■ 답:

 □ 정답:
 4

 $\overline{\mathrm{DG}} = 2\sqrt{2}$

 $\overline{DH} = 2$ 이므로 $\cos r = \frac{2}{r} = \frac{1}{r}$

고 $\sqrt{2}$ 따라서 a+b=4 이다.