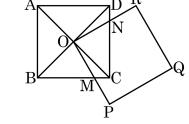

다음 그림에서 $\square ABCD$ 는 사다리꼴이다. $\triangle ABC = 80 \text{cm}^2$, $\triangle DOC = 30 \text{cm}^2$ 일 때, $\triangle OBC$ 의 넓이는? 1.

 450cm^2

해설


- $2 30 \text{cm}^2$ \bigcirc 60cm²
- $3 40 \text{cm}^2$

 $\overline{\mathrm{AD}}//\overline{\mathrm{BC}}$ 이므로

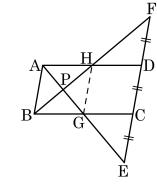
 $\triangle ABC = \triangle DCB = 80cm^2$

 $\therefore \triangle OBC = \triangle DCB - \triangle DOC = 80 - 30 = 50 (cm^2)$

오른쪽 그림에서 O 는 두 대각선 $\overline{AC},\;\overline{BD}$ 의 중점이며 또, 두 정사각 2. 형 $\square ABCD$ 와 $\square OPQR$ 은 합동이다. $\square OPQR$ 이 점 O 를 중심으로 회전을 하며, $\overline{\mathrm{OP}}$ 와의 교점 M 이 $\overline{\mathrm{BC}}$ 위를 움직일 때, $\square\mathrm{OMCN}$ 의 넓이는 얼마인가? (단, $\overline{AB}=4\mathrm{cm}$)

 34cm^2 $\odot 3 \text{cm}^2$ 4 5cm^2 \bigcirc 6cm² \bigcirc 2cm²

 \triangle OMC 와 \triangle OND 에서 $\overline{OC} = \overline{OD}$ $\angle \text{OCM} = \angle \text{ODN} = 45^{\circ}$ $\angle COM = 90^{\circ} - \angle CON = \angle DON$


 $\therefore \angle COM = \angle DON$

 $\therefore \triangle OMC \equiv \triangle OND(SAS$ 합동)

즉, $\triangle \mathrm{OMC} = \triangle \mathrm{OND}$ 따라서 $\square \mathrm{OMCN}$ 의 넓이는 $\triangle \mathrm{OBC}$ 의 넓이와 같다.

 $\therefore \Box OMCN = \frac{1}{4}\Box ABCD = 4(cm^2)$

다음 그림에서 $\square ABCD$ 는 평행사변형이고 $2\overline{AB} = \overline{AD} = 6$ 이다. 3. $\overline{\mathrm{FD}} = \overline{\mathrm{DC}} = \overline{\mathrm{CE}}$ 일 때, $\Box \mathrm{ABGH}$ 의 둘레의 길이를 구하면?

212

③ 14

④ 16

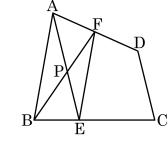
⑤ 18

 $\overline{AB} = \overline{CD} = \overline{DF}$

해설

① 10

 $\angle ABH = \angle HFD()$ 文각) $\angle BAH = \angle HDF()$ 이므로


 $\triangle ABH \equiv \triangle DFH (ASA 합동)$

따라서 $\overline{\mathrm{AH}} = \overline{\mathrm{HD}} = 3$ 이다.

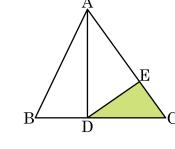
마찬가지로 $\triangle ABG \equiv \triangle ECG$ 에서 $\overline{BG} = 3$ 이므로 □ABGH는 마름모이다.

따라서 둘레의 길이는 $3 \times 4 = 12$ 이다.

4. 다음 그림과 같은 사각형 ABCD에서 $\overline{AB}//\overline{FE}$ 일 때, 넓이가 같은 삼각형은 모두 몇 쌍 있는가?

④ 4쌍 ⑤ 5쌍

③3쌍


① 1쌍 ② 2쌍

해설

 $\triangle APF = \triangle PBE$

 $\triangle ABE = \triangle ABF, \ \triangle AEF = \triangle BEF$

5. 다음 그림에서 \overline{BD} : $\overline{DC}=2$: 3, \overline{CE} : $\overline{EA}=1$: 2이다. $\triangle ABC=15$ 일 때, $\triangle DCE$ 의 넓이는?

① 2

3 4

4 5

⑤ 6

 $\triangle ADC = 3\triangle DCE$

 $\triangle ABD = \frac{2}{3} \triangle ADC = 2 \triangle DCE$ 이므로

△ABC = 5△DCE = 15이다.

 $\therefore \ \Delta DCE = 3$