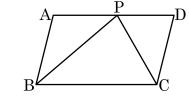
1. 다음 그림에서 □ABCD 는 평행사변형이다. □ABCD = $28 \mathrm{cm}^2$ 일 때, ΔPBC 의 넓이를 구하여라.



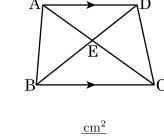
 $\underline{\mathrm{cm}^2}$

▷ 정답: 14 cm²

6 14 <u>cm</u>

▶ 답:

다음 그림의 사각형 ABCD 에서 $\operatorname{\overline{AD}}/\!\!/\operatorname{\overline{BC}}$ 이고, $\operatorname{\Delta ABC}$ 의 넓이가 2. $15 cm^2$ 일 때, △DBC 의 넓이를 구하여라.



▶ 답: ▷ 정답: 15 cm²

 ΔABC 와 ΔDBC 에서 \overline{BC} 는 동일하고 \overline{AD} 에서 \overline{BC} 까지의

거리는 같으므로 ΔABC 의 넓이와 ΔDBC 의 넓이는 동일하다.

3. 다음 그림의 사각형 ABCD 에서 $\overline{\rm AD}//\overline{\rm BC}$ 이고, $\Delta \rm ABC$ 의 넓이가 $20{\rm cm}^2$ 이고, $\Delta \rm BEC$ 의 넓이카 $10{\rm cm}^2$ 일 때, $\Delta \rm DEC$ 의 넓이를 구하여 라.

B

 $\underline{\mathrm{cm}^2}$

▷ 정답: 10 <u>cm²</u>

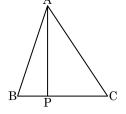
7 01 10 <u>0111</u>

밑변이 동일하고 밑변과 평행한 직선까지의 거리가 같으므로

▶ 답:

△ABC 의 넓이와 △DBC 의 넓이는 동일하다. △DBC = 20cm² ∴ △DEC = △DBC - △BEC = 20 - 10 = 10(cm²)

4. 다음 그림에서 $\overline{BP}:\overline{CP}=1:2,\ \triangle ABC=8\ cm^2$ 일 때, $\triangle ABP$ 의 넓이를 구하여라.

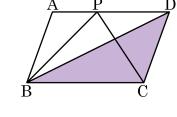


답: $\underline{\text{cm}^2}$ > 정답: $\underline{8}\underline{\text{cm}^2}$

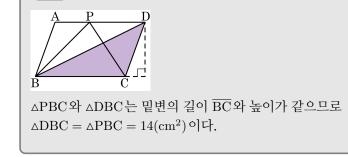
3

 $\triangle ABP$ 와 $\triangle APC$ 의 높이는 같으므로 $\triangle ABP = 8 \times \frac{1}{3} = \frac{8}{3} \text{ (cm}^2\text{)}$

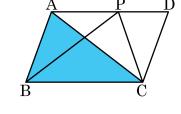
5. 다음 그림과 같이 $\Box ABCD$ 가 평행사변형이고 $\Delta PBC = 14 cm^2$ 일 때, 어두운 부분의 넓이는?



- ① 13cm² ④ 16cm²
- 2 14cm^2 17cm^2
- $3 15 \text{cm}^2$



6. 다음 그림과 같이 □ABCD가 평행사변형이고 ΔPBC = 14cm² 일 때, 색칠한 부분의 넓이를 구하여라. (단, 단위는 생략한다.)



답:

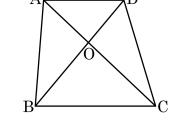
➢ 정답: 14

해설

 $\Delta ext{PBC}$ 와 $\Delta ext{ABC}$ 는 밑변의 길이 $\overline{ ext{BC}}$ 와 높이가 같으므로

 $\triangle ABC = \triangle PBC = 14(cm^2)$ 이다.

7. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD 에서 \overline{OD} : $\overline{OB}=2:3$ 이다. $\Delta BOC=90 {\rm cm}^2$ 일 때, $\Box ABCD$ 의 넓이를 구하여라. (단, 단 위는 생략한다.)



 ► 답:

 ▷ 정답:
 250

 $\triangle COD : \triangle BOC = 2 : 3$ 이므로

해설

 $\triangle COD: 90 = 2:3$ $\therefore \triangle COD = 60 cm^2$ 이때 $\triangle ABD = \triangle ACD$ 이므로

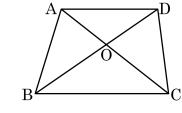
 $\triangle ABO = \triangle COD = 60 \text{cm}^2$

또, $\triangle AOD : \triangle AOB = 2 : 3 이므로$

 $\triangle AOD: 60 = 2:3 \therefore \triangle AOB = 40 \text{cm}^2$

 $\therefore \Box ABCD = 40 + 60 + 60 + 90 = 250(cm^2)$

8. 다음 그림의 □ABCD 는 AD//BC 인 사다리꼴이다. 두 대각선의 교점을 O 라 할 때, △ABC = 50cm², △DOC = 15cm² 이다. 이 때, △OBC 의 넓이는?



① 25cm² ④ 55cm² 235cm^2 565cm^2

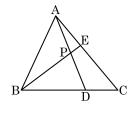
 345cm^2

 $\triangle ABC = \triangle DBC$ 이므로 $\triangle ABO = \triangle DOC$: $\triangle OBC = 50 - 15 = 35(cm^2)$

해설

 $\triangle OBC = 50 - 15 = 35(cm^2)$

다음 그림 $\triangle ABC$ 에서 \overline{DP} : \overline{PA} = \overline{BD} : 9. $\overline{\mathrm{DC}}=3:2$ 이다. $\Delta\mathrm{ABP}$ 의 넓이가 $10\,\mathrm{cm}^2$ 일 때, △ABC의 넓이는?

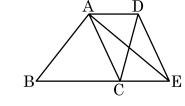


- ① $\frac{112}{5} \text{ cm}^2$ ② $\frac{113}{4} \text{ cm}^2$ ③ $\frac{125}{3} \text{ cm}^2$ ④ $\frac{123}{11} \text{ cm}^2$ ⑤ $\frac{133}{7} \text{ cm}^2$

$$\triangle ABD = 10 \times \frac{5}{2} = 25$$

$$\therefore \triangle ABC = 25 \times \frac{5}{3} = \frac{125}{3}$$

 ${f 10}$. 다음 그림에서 □ABCD의 넓이는 $20{
m cm}^2$ 이고, ${\it \triangle}$ ACE의 넓이는 $8{
m cm}^2$ 이다. AC // DE 일 때, ΔABC의 넓이는?



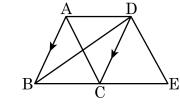
- \bigcirc 8cm² 4 11cm^2
- $\ \, 2 \ \, 9 cm^2$ \bigcirc 12cm²
- $3 10 \text{cm}^2$

 $\triangle ACE = \triangle ADE = \triangle ADC = \triangle CED \, ^{\circ}] \, \mathcal{I}$

해설

 $\triangle ABC = \square ABCD - \triangle ACD$ 이므로 $\triangle ABC = 20-8 = 12(cm^2)$

11. 다음 그림에서 $\overline{AB} /\!\!/ \, \overline{DC}$ 이고, $\triangle ABC = 16 \mathrm{cm}^2$, $\triangle DBE = 34 \mathrm{cm}^2$ 일 때, □ABED의 넓이는?

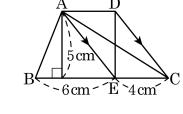


- \bigcirc 30cm² $45 \, \mathrm{cm}^2$
- \bigcirc 35cm² 50cm^2
- $3 40 \text{cm}^2$

 $\overline{AB} /\!/ \, \overline{DC}$ 이므로 $\triangle ABC = \triangle ABD = 16 (cm^2)$

 $\therefore \Box ABED = \triangle ABD + \triangle DBE$ $= 16 + 34 = 50 (\text{cm}^2)$

12. 다음 그림의 ĀD // BC 인 사다리꼴 ABCD 에서 ĀE // DC 일 때, □ABED의 넓이는?



① 25cm^2 ④ 40cm^2

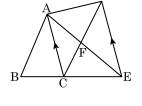
② 30cm^2 ③ 45cm^2

 35cm^2

 $\overline{
m AE}\,/\!/\,\overline{
m DC}$ 이므로 밑변과 높이가 같아 $\Delta
m AEC = \Delta
m ADE$ 이다.

 $\Box ABED = \triangle ABE + \triangle ADE = \triangle ABE + \triangle AEC = \triangle ABC$ $\therefore \Box ABED = \frac{1}{2} \times 5 \times (6+4) = 25(cm^2)$

13. 다음 그림은 $\square ABCD$ 의 변 \overline{BC} 의 연장선 위에 $\overline{\mathrm{AC}}\,/\!/\,\overline{\mathrm{DE}}$ 가 되게 점 E 를 잡은 것이다. □ABCD 의 넓이가 30 cm² 일 때, △ABE 의 넓이는? ① $15 \,\mathrm{cm}^2$ ② $20 \,\mathrm{cm}^2$ $3 25 \,\mathrm{cm}^2$



 $40 \, \mathrm{30 \, cm^2}$ $5 \, 60 \, \mathrm{cm^2}$

해설

 $\overline{\mathrm{AC}}\,/\!/\,\overline{\mathrm{DE}}$ 이므로 $\Delta\mathrm{ACD}=\Delta\mathrm{ACE}$ 이다. $\triangle \mathrm{ABE} = \triangle \mathrm{ABC} + \triangle \mathrm{ACE}$ $= \triangle \mathrm{ABC} + \triangle \mathrm{ACD}$ $= \square \mathrm{ABCD}$

 $\therefore \triangle ABE = 30 (\text{cm}^2)$

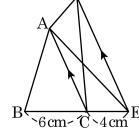
- 14. 다음 그림과 같은 $\triangle ABC$ 의 넓이가 $70cm^2$ 이고 $\overline{BD}:\overline{DC}=4:3$ 일 때, $\triangle ADC$ 의 넓이는?

- 20cm^2 4030cm^2 535cm^2

 $3 25 \text{cm}^2$

 \triangle ADC의 넓이는 = $70 \times \frac{3}{4+3} = 30 (\text{cm}^2)$

15. 다음 그림에서 \overline{AC} $/\!/ \overline{DE}$ 일 때, △ABC = $24 cm^2$ 이다. □ABCD 의 넓이를 구하여라.



 $\underline{\mathrm{cm}^2}$

➢ 정답: 40 cm²

▶ 답:

해설

 \overline{AC} $/\!/ \overline{DE}$ 이므로 $\triangle ACD = \triangle ACE$ $\Box ABCD = \triangle ABC + \triangle ACD$

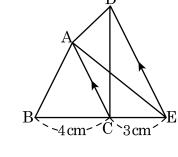
 $= \triangle ABC + \triangle ACE$

 $= \triangle ABE$

(높이) = 24 × 2 ÷ 6 = 8(cm) 이므로 □ABCD = △ABE

 $= 10 \times 8 \times \frac{1}{2} = 40 \text{ cm}^2\text{)}$

16. 다음 그림에서 \overline{AC} $/\!/\, \overline{DE}$ 일 때, △ABC = $8\,\mathrm{cm}^2$ 이다. □ABCD 의 넓이를 구하여라.



 $\underline{\mathrm{cm}^2}$

> 정답: 14<u>cm²</u>

▶ 답:

 $\triangle ACD = \triangle ACE$ 이므로 $\Box ABCD = \triangle ABC + \triangle ACD$ $= \triangle ABC + \triangle ACE$ $= \triangle ABE$ $(높이) = 8 \times 2 \div 4 = 4 \text{ (cm)}$ $(넓이) = 7 \times 4 \div 2 = 14 \text{ (cm}^2)$

- 17. 다음 그림과 같은 직사각형 ABCD 에서 \overline{AB} 의 연장선 위의 점 \overline{EB} 잡아 \overline{BC} 와 \overline{ED} 의 교점을 \overline{F} 라 할 때, ΔFEC 의 넓이를 구하여 라.
- 4 cm B 3 cm 5 cm

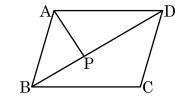
 ▷ 정답:
 6 cm²

 $\underline{\mathrm{cm}^2}$

▶ 답:

 $\overline{\mathrm{BD}}$ 를 그으면 $\Delta \mathrm{BFD} = \Delta \mathrm{FEC}$ 이므로 $\Delta \mathrm{FEC} = \frac{1}{2} \times 3 \times 4 = 6 \; (\; \mathrm{cm}^2)$

18. 다음 그림의 평행사변형 ABCD 의 넓이는 $70 \mathrm{cm}^2$ 이고 $\overline{\mathrm{BP}}$: $\overline{\mathrm{PD}}$ = 2:3 이다. $\Delta\mathrm{ABP}$ 의 넓이는?



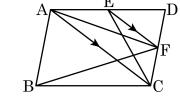
- \bigcirc 5cm² $4 21 \text{cm}^2$
- $2 10 \text{cm}^2$
- $\boxed{3}14\mathrm{cm}^2$
- \bigcirc 25cm²

$$\triangle ABD = \frac{70}{2} = 35(cm^2) = \triangle ABP + \triangle ADP$$

$$2: 3 = \triangle ABP : \triangle APD$$

$$\therefore \triangle ABP = 35 \times \frac{2}{5} = 14(cm^2)$$

19. 다음 그림의 평행사변형 ABCD 에서 \overline{AC} $/\!/\!| \overline{EF}$, \overline{AB} $/\!/\!| \overline{DC}$ 이고 $\Delta BCF = 34 cm^2$ 일 때, ΔACE 의 넓이는?



 $40 \text{ } 30 \text{ cm}^2$

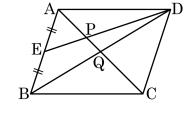
 \bigcirc 18cm^2

- ② 22cm^2 ③ 34cm^2
- $3 26 \text{cm}^2$

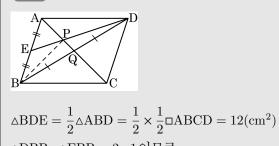
해설

 \overline{AB} $/\!/ \overline{DC}$ 이므로 밑변과 높이가 같고, $\Delta BCF = \Delta ACF$ 이다.

AC // EF 이므로 밑변과 높이가 같고, △ACF = △ACE이다. ∴ △ACE = 34(cm²) **20.** 다음 그림의 평행사변형 ABCD에서 점 E는 변 AB의 중점이고, $\overline{\rm DP}: \overline{\rm PE} = 2:1$ 이다. 평행사변형의 넓이는 $48{
m cm}^2$ 일 때, $\Delta {
m DPQ}$ 의 넓이는?



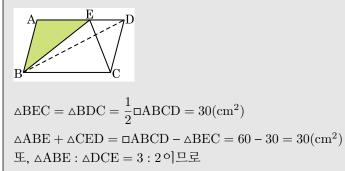
 3 5cm^2



2 2 2 2 Δ DBP: \triangle EBP = 2:1이므로 Δ DBP = $\frac{2}{3}$ \triangle BDE = $\frac{2}{3} \times 12 = 8 (\text{cm}^2)$ \triangle BPQ: \triangle DPQ = 1:1 \triangle DPQ = $\frac{1}{2}$ \triangle DBP = $\frac{1}{2} \times 8 = 4 (\text{cm}^2)$

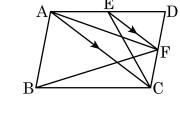
- **21.** 다음 그림과 같은 평행사변형 ABCD에서 AE : ED = 3 : 2이고 □ABCD = 60cm²일 때, △ABE의 넓이는?

 - \bigcirc $18 \mathrm{cm}^2$
- 22cm^2
- $3 26 \text{cm}^2$
- $4 30 \text{cm}^2$
- \bigcirc 34cm²



 $\triangle ABE = \frac{3}{5} \times 30 = 18 (cm^2)$

22. 다음 그림의 평행사변형 ABCD에서 \overline{AC} $/\!/\!/\,\overline{EF}$ 이고 ΔBCF 의 넓이가 $15 cm^2$ 일 때, ΔACE 의 넓이는?



① 15cm^2 ④ 30cm^2

 20cm^2

 $3 25 \text{cm}^2$

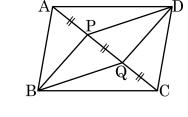
 \bigcirc 35cm²

 $\overline{
m AB}\,/\!/\,\overline{
m DC}$ 이므로 밑변과 높이가 같아

 $\Delta BCF = \Delta ACF$ 이고, $\overline{AC} // \overline{EF}$ 이므로 밑변과 높이가 같아 $\Delta ACF = \Delta ACE$

 $\therefore \triangle ACE = 15(cm^2)$

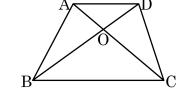
 ${f 23}$. 다음 그림과 같은 평행사변형 ${f ABCD}$ 의 대각선 ${f AC}$ 를 삼등분하는 점을 각각 P, Q라고 하자. □ABCD의 넓이는 □PBQD의 넓이의 몇 배인지 구하여라.



배

▶ 답: ▷ 정답: 3<u>배</u>

 $\triangle DPQ = \frac{1}{3}\triangle ACD = \frac{1}{3} \times \frac{1}{2} \square ABCD = \frac{1}{6} \square ABCD$ $\triangle BPQ = \frac{1}{3}\triangle ABC = \frac{1}{3} \times \frac{1}{2} \square ABCD = \frac{1}{6} \square ABCD$ $\Box \mathrm{PBQD} = \Delta \mathrm{DPQ} + \Delta \mathrm{BPQ} = \frac{1}{6}\Box \mathrm{ABCD} + \frac{1}{6}\Box \mathrm{ABCD}$ $=\frac{1}{3}\square ABCD$ 따라서 □ABCD의 넓이는 □PBQD의 넓이의 3배이다. **24.** 다음 사다리꼴 ABCD 에서 $\overline{\rm AD}//\overline{\rm BC}$, $\overline{\rm AO}$: $\overline{\rm OC}$ = 1 : 2 이고 $\Delta \mathrm{DOC} = 12\mathrm{cm}^2$ 이다. 사다리꼴 ABCD 의 넓이는?

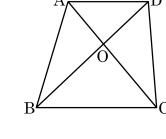


- $\textcircled{1} \ \ 32 \mathrm{cm}^2$ $463 \, \mathrm{cm}^2$
- 248cm^2 \bigcirc 72cm²
- 354cm^2

해설

 $1:2=\triangle AOD:12cm^2$, $\triangle AOD=6cm^2$ $\triangle DOC=\triangle AOB=12cm^2$, $1:2=12cm^2:\triangle BOC$, $\triangle BOC=$ $\Box ABCD = 6 + 12 + 12 + 24 = 54 (\,\mathrm{cm}^2)$

25. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD 에서 \overline{AO} : $\overline{CO}=2:3$ 이다. $\triangle ABD$ 가 $30 cm^2$ 일 때, $\triangle DBC$ 의 넓이를 구하여라.



 cm^2

 ▶ 정답:
 45 cm²

 $\triangle ABD = \triangle ACD = 30 \mathrm{cm}^2$, $\triangle AOD : \triangle DOC = 2 : 3$, $\triangle DOC =$

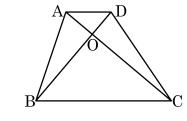
해설

답:

 $18 cm^2$ $\Delta DOC = \Delta AOB = 18 cm^2 \; , \; 2:3 = 18 cm^2 : \Delta OBC \; , \; \Delta OBC = 27 cm^2$

 $\therefore \triangle DBC = \triangle DOC + \triangle OBC = 18 + 27 = 45(cm^2)$

26. 다음 그림의 사다리꼴 ABCD 는 $\overline{\rm AD}//\overline{\rm BC}$, $\overline{\rm AO}$: $\overline{\rm OC}=1:3$ 이고 $\triangle {\rm ABD}=20{\rm cm}^2$ 일 때, $\triangle {\rm DBC}$ 의 넓이는?

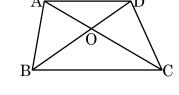


- ① 30cm² ④ 75cm²
- ② 45cm^2 ③ 90cm^2
- $360 \mathrm{cm}^2$

 $\triangle ABO : \triangle AOD = 3 : 1$, $\triangle AOB = 15cm^2$,

 $1: 3 = 15 \text{cm}^2 : \triangle OBC , \triangle OBC = 45 \text{cm}^2 ,$ $\therefore \triangle ABC = \triangle DBC = \triangle AOB + \triangle OBC = 15 + 45 = 60 \text{(cm}^2)$

 ${f 27}$. 다음 그림과 같이 ${f AD}//{f BC}$ 인 사다리꼴 ABCD 에서 $\Delta DCO=18$ 일 때, △ABC 의 넓이를 구하여라. (단, $3\overline{\mathrm{DO}}=2\overline{\mathrm{BO}}$)



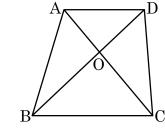
▶ 답: ▷ 정답: 45

 $\triangle ABO = \triangle DCO = 18$

해설

또, $3\overline{\mathrm{DO}} = 2\overline{\mathrm{BO}}$ 이므로 ∴ △BOC = 27 따라서 $\triangle ABC = \triangle ABO + \triangle BOC = 18 + 27 = 45$

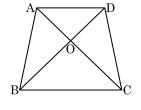
28. 사다리꼴 ABCD 는 $\overline{AD}//\overline{BC}$ 이고, \overline{BO} : $\overline{OD}=3:2$ 이다. $\triangle ODC=18cm^2$ 일 때, $\triangle OBC$ 의 넓이는?



① 9cm^2 ④ 36cm^2 ② 18cm^2 ③ 45cm^2 327cm^2

△OBC 와 △DOC 의 높이는 같다. 3:2 = △OBC:18cm² ∴ △OBC = 27cm²

29. 다음 그림에서 \overline{AD} : \overline{BC} = 2 : 3 이고, $\Delta {
m AOD} = 24\,{
m cm}^2$ 일 때, 사다리꼴 ABCD 의 넓이를 구하시오.



답:

▷ 정답: 150<u>cm²</u>

 ΔAOD 와 ΔBOC 는 닮음이고 닮음비는 2:3

해설

이때, $\overline{\mathrm{OD}}:\overline{\mathrm{OB}}=2:3$ 이므로 $\triangle AOD : \triangle AOB = 2 : 3, \ \triangle AOB = 36 \,\mathrm{cm}^2$

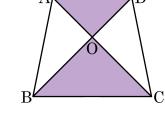
 $\underline{\mathrm{cm}^2}$

 $\triangle DOC = 36\,\mathrm{cm}^2$

그리고 $\overline{\mathrm{OA}}:\overline{\mathrm{OC}}=2:3$ 이므로 $\triangle OAB : \triangle BOC = 2 : 3$

 $\therefore \triangle BOC = 54 \text{ cm}^2$ 따라서 $\square ABCD = 24 + 36 + 36 + 54 = 150 \text{ (cm}^2)$

30. $\overline{\rm AD}$ $/\!/\!/\,\overline{\rm BC}$ 인 사다리꼴 ABCD 의 넓이는 □ABCD = $50{\rm cm}^2$ 이다. $\triangle{\rm ABO}=13{\rm cm}^2$ 일 때, 색칠된 부분의 넓이를 구하여라.

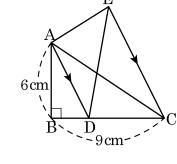


 ▶ 답:
 cm²

 ▷ 정답:
 24 cm²

 $\overline{
m AD}\,/\!/\,\overline{
m BC}$ 이므로 $\Delta
m ABD = \Delta ACD$ 이고, $\Delta
m AOD$ 는 공통이므로

△ABO = △DCO = 13cm² 따라서 색칠된 부분의 넓이는 □ABCD - 2△ABO = 50 - 26 = 24cm² **31.** 다음 그림에서 \overline{AD} $/\!/ \overline{EC}$, \overline{BD} : $\overline{DC} = 1:2$ 이고, $\overline{AB} = 6 cm$, $\overline{BC} =$ 9cm 일 때, △ADE의 넓이를 구하여라.



 $\underline{\mathrm{cm}^2}$

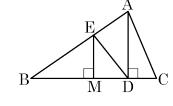
▷ 정답: 18 cm²

답:

 $\triangle ABD$ 와 $\triangle ADC$ 에서 높이는 같고 밑변은 1:2이므로 $\triangle ABD:$ $\triangle ADC=1:2$ $\triangle ADC = \triangle ABC \times \frac{2}{1+2} = \frac{1}{2} \times 6 \times 9 \times \frac{2}{3} = 18 (cm^2)$

 $\overline{\mathrm{AD}}\,/\!/\,\overline{\mathrm{EC}}$ 이므로 $\Delta\mathrm{ADE}\Delta\mathrm{ADC}$ 의 밑변과 높이가 같다. $\therefore \triangle ADE = \triangle ADC = 18(cm^2)$

32. 다음 그림에서 $\overline{BM} = \overline{MC}$, $\overline{EM} \bot \overline{BC}$, $\overline{AD} \bot \overline{BC}$ 이다. $\triangle ABC$ 의 넓이가 60cm² 일 때, □AEDC 의 넓이는?

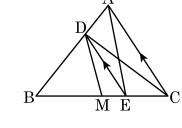


- \bigcirc 20cm² $\textcircled{4} \ 35 \mathrm{cm}^2$
- $25 cm^2$ \bigcirc 40cm^2
- 30cm^2

 $\overline{\mathrm{EM}}$ 과 $\overline{\mathrm{AD}}$ 가 모두 $\overline{\mathrm{BC}}$ 에 수직이므로 $\overline{\mathrm{EM}}$ // $\overline{\mathrm{AD}}$

따라서 밑변과 높이가 같으므로 $\triangle AED = \triangle AMD$ 이다. $\Box AEDC = \triangle AED + \triangle ADC = \triangle AMD + \triangle ADC = \triangle AMC$ $\therefore \Box AEDC = \frac{1}{2} \triangle ABC = 30cm^2$

33. 다음 그림과 같은 △ABC에서 ĀC // DE이고, BC 의 중점을 M이라 한다. □ADME의 넓이가 10cm² 일 때, △DBC의 넓이를 구하여라. (단, 단위는 생략한다.)



답:▷ 정답: 20

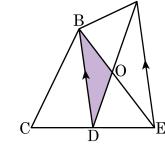
 $\overline{
m DE}\,/\!/\,\overline{
m AC}$ 이므로 밑변과 높이가 같아 $_{\Delta}{
m DAE}=_{\Delta}{
m DEC}$ 이므로

해설

 $\Box ADME = \Delta DME + \Delta DAE = \Delta DME + \Delta DEC = \Delta DMC = 10(cm^2)$ $\overline{BM} = \overline{CM}$ 이므로 밑변과 높이가 같아 $\Delta DBM = \Delta DCM = 10(cm^2)$

 $\therefore \triangle DBC = 2 \times 10 = 20(\text{cm}^2)$

34. 다음 그림에서 \overline{AE} $//\overline{BD}$, $\Delta BCE = 40 cm^2$, $\Delta ODE = 10 cm^2$, \overline{BD} 가 □ABCD의 넓이를 이등분할 때, △OBD의 넓이를 구하여라. (단, 단위는 생략한다.)



▶ 답: ▷ 정답: 10

 $\overline{\mathrm{AE}} \, / / \, \overline{\mathrm{BD}}$ 이므로 밑변과 높이가 같으므로 $\Delta \mathrm{ABD} = \Delta \mathrm{EDB}$ 여기서 $\triangle OBD$ 는 공통이므로 $\triangle OAB = \triangle ODE = 10(cm^2)$ $\Box ABCD = \triangle BCD + \triangle ABD = \triangle BCD + \triangle BDE = \triangle BCE =$ $40(\mathrm{cm}^2)$ BD가 □ABCD를 이등분하므로 $\frac{1}{2} \Box ABCD = \triangle BCD = \triangle BDE = \triangle OBD + \triangle ODE = \triangle OBD +$ $10(\mathrm{cm}^2)$ $\frac{40}{2} = \triangle OBD + 10$ ∴ \triangle OBD = $10(\text{cm}^2)$

35. 다음 그림에서 \overline{AC} $/\!/ \, \overline{DE}$ 이고 $\triangle ABC=135 cm^2$ 이다. $\overline{BC}=15 cm$, $\overline{CE}=9 cm$ 일 때, $\triangle ACD$ 의 넓이를 구하여라.

A B 15cm C 9cm

<u>cm²</u>

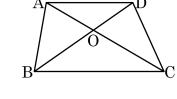
➢ 정답: 81 cm²

▶ 답:

 $\overline{AB} = 135 \times 2 \div 15 = 18 \text{(cm)}$

 $\triangle ACD = \triangle ACE = \frac{1}{2} \times 9 \times 18 = 81 (cm^2)$

 ${f 36}$. 다음 그림과 같이 ${f \overline{AD}}//{f \overline{BC}}$ 인 사다리꼴 ABCD 에서 ${f \overline{OA}}:{f \overline{OC}}=2:3$ 이다. $\triangle AOD = 10 cm^2$ 일 때, $\Box ABCD$ 의 넓이를 구하여라.



 $\underline{\mathrm{cm}^2}$

▶ 답: ightharpoonup 정답: $rac{125}{2}$ $m cm^2$

 $\triangle AOD$, $\triangle DOC$ 는 높이가 같다. $2:3=10 \mathrm{cm}^2:\triangle DOC$,

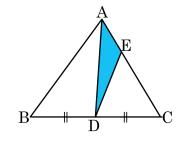
 $\Delta \mathrm{DOC} = 15 \mathrm{cm}^2$ $\triangle ABD = \triangle ACD$ 이므로 $\triangle ABO = \triangle DOC = 15 cm^2$

 $\triangle ABO$, $\triangle BCO$ 는 높이가 같다. $2:3=15 \mathrm{cm}^2:\triangle OBC$,

 $\triangle OBC = \frac{45}{2}cm^2$ $\Box ABCD = \triangle AOD + \triangle DOC + \triangle OBC + \triangle ABO = 10 + 15 +$

 $15 + \frac{45}{2} = \frac{125}{2} (\text{cm}^2)$

 ${f 37.}$ 다음 그림과 같이 $\triangle ABC$ 에서 $\overline{AE}:\overline{EC}=1:2$ 이고 $\triangle AED=4{
m cm}^2$ 일 때, △ABC 의 넓이는?



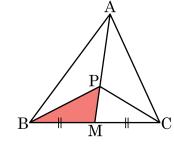
- 424cm²
- $2 16 \text{cm}^2$
- $3 20 \text{cm}^2$
- \bigcirc 28cm²

 $\overline{AE}:\overline{EC}=1$: 2, $\triangle AED=4$ 이므로 $\triangle CDE=8$, $\triangle ADC=$ 4 + 8 = 12

 $\overline{\mathrm{BD}} = \overline{\mathrm{CD}}$ 이므로 $\triangle \mathrm{ADC} = \triangle \mathrm{ADB}$

 $\therefore \triangle ABC = 2\triangle ADC = 24(cm^2)$

38. 다음 그림에서 점 M은 \overline{BC} 의 중점이고 $\overline{AP}=2\overline{PM}$ 이다. $\triangle ABC=60 \text{cm}^2$ 일 때, $\triangle PBM$ 의 넓이는?



① 10cm^2 ④ 25cm^2

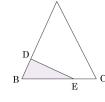
 $\Im 30 \text{cm}^2$

 $3 20 \text{cm}^2$

 $2 15 cm^2$

 $\overline{AP}=2\overline{PM}$ 이므로 $\triangle ABP=2\triangle PBM$ 이다. \therefore $\triangle ABM=3\triangle PBM$

또, $\overline{\mathrm{BM}} = \overline{\mathrm{CM}}$ 이므로 $\triangle \mathrm{ABM} = \triangle \mathrm{ACM}$ 이다. 따라서 $\triangle \mathrm{ABC} = 6\triangle \mathrm{PBM}$ 이므로 $60 = 6\triangle \mathrm{PBM}$ ∴ $\triangle \mathrm{PBM} = 10(\mathrm{cm}^2)$ **39.** 다음 그림에서 $\triangle ABC$ 의 넓이는 60이다. $\overline{AD}:\overline{DB}=4:1,\overline{BE}:\overline{EC}=3:1$ 일 때, $\triangle DBE$ 의 넓이를 구하여라.



 ► 답:

 ▷ 정답:
 9

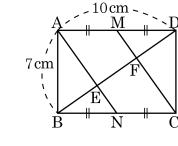
 $\triangle ABE$ 와 $\triangle AEC$ 는 높이가 같고 밑변이 3:1이므로 $\triangle ABE:$ $\triangle AEC=3:1$

∴ △ABE = △ABC × $\frac{3}{3+1}$ = $60 \times \frac{3}{4}$ = 45△AED와 △DBE에서 높이가 같고 밑변이 4:1이므로 △AED:

 $\triangle DBE = 4:1$

 $\therefore \triangle DBE = \triangle ABE \times \frac{1}{4+1} = 45 \times \frac{1}{5} = 9$

40. 다음 그림에서 $\square ABCD$ 는 직사각형이고, 점 M, N은 각각 \overline{AD} , \overline{BC} 의 중점이다. $\overline{AD}=10\,\mathrm{cm}$, $\overline{AB}=7\,\mathrm{cm}$ 일 때, $\square ENCF$ 의 넓이는?



- ① $\frac{33}{2} \text{ cm}^2$ ② 17 cm^2 ④ 18 cm^2 ⑤ $\frac{37}{2} \text{ cm}^2$
- $35 \over 2 \text{ cm}^2$

 $\overline{\mathrm{MN}}$ 과 $\overline{\mathrm{EF}}$ 의 교점을 O 라 하면

 $\triangle MOF = \triangle ENO$ 이므로 $\Box \text{EFCN} = \triangle \text{MNC} = \triangle \text{ABN}$ $= \frac{1}{4} \Box \text{ABCD} = \frac{1}{4} \times 7 \times 10$