1. 다음은 평행사변형 ABCD의 두 대각선의 교점 O를 지나는 직선이 변AD, BC와 만나는 점을 각각 P, Q라고 하면 $\overline{PO} = \overline{QO}$ 를 증명하는 과정이다. 빈칸에 들어갈 알맞은 것을 고르면?

[가정] \overline{AB} // \overline{CD} , \overline{AD} // \overline{BC} [결론] $\overline{PO} = \overline{QO}$ [증명] $\triangle APO$ 와 $\triangle CQO$ 에서 $\angle POA = \angle QOC$, $\overline{AO} = \boxed{}$, $\angle PAO = \angle QOC$ $\therefore \triangle APO \equiv \triangle CQO(ASA$ 합동), $\therefore \overline{PO} = \overline{QO}$

①
$$\overline{PO}$$
 ② \overline{AP} ③ \overline{DO} ④ \overline{BO} ⑤ \overline{CO}

해설

평행사변형의 두 대각선은 서로를 이등분하므로 $\overline{AO} = \overline{OC}$ 이다.

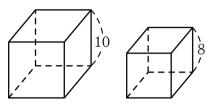
2. 다음 조건에 알맞은 사각형을 모두 구하면?

대각선이 서로 다른 것을 수직이등분한다.

- ① 마름모, 정사각형
 - ② 평행사변형, 마름모
 - ③ 직사각형, 마름모, 정사각형
 - ④ 등변사다리꼴, 직사각형, 정사각형
- ⑤ 평행사변형, 등변사다리꼴, 마름모, 정사각형

해설

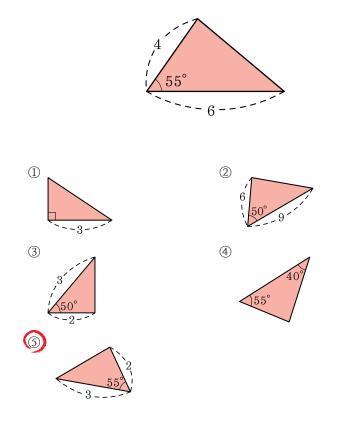
두 대각선이 서로 다른 것을 수직이등분하는 사각형은 마름모, 정사각형이다. 3. 다음 그림의 두 정육면체가 서로 닮은 도형일 때, 두 정육면체의 닮음 비는?



① 4:1 ② 10:3 ③ 5:4 ④ 4:5 ⑤ 1:1

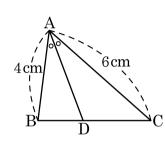
두 입체도형의 닮음비는 대응하는 모서리의 길이의 비와 같으므로 10 : 8 = 5 : 4 이다.

4. 다음 주어진 삼각형과 닮은 삼각형을 알맞게 짝지은 것은?



⑤는 SAS 닮음이다.

5. 다음 그림에서 \overline{AD} 는 $\angle A$ 의 이등분선이다. $\triangle ABD$ 의 넓이는 $12 \mathrm{cm}^2$ 이다. $\triangle ACD$ 의 넓이는?



 $18 \mathrm{cm}^2$

 20cm^2

 $3 21 \text{cm}^2$

 $\textcircled{4} 24 \text{cm}^2$

 \bigcirc 27cm²

 $4:6=12:\triangle ACD$

 $\therefore \triangle ACD = 18cm^2$

다음은 평행사변형 ABCD 의 각 변의 중점을 각각 E, F, G, H 라 하고 \overline{AF} 와 \overline{CE} 의 교점 중 □APCQ 가 평행사변형이 되는 조건으로 가장 알맞은 것은?

① $\overline{AE} = \overline{EB}$, $\overline{AD}//\overline{CB}$

6.

- $\overline{AB}/\overline{DC}$, $\overline{AQ} = \overline{PC}$
- \bigcirc $\overline{AP} = \overline{QC}$, $\overline{AQ} = \overline{PC}$

$\overline{AE}//\overline{CG}$, $\overline{AE} = \overline{CG}$ 이므로

□AECG 는 평행사변형 $\therefore \overline{AG}//\overline{EC}$, 즉 $\overline{AQ}//\overline{PC}\cdots$ ①

 $\overline{AH}//\overline{FC}$, $\overline{AH} = \overline{FC}$ 이므로

□AFCH 는 평행사변형 $\therefore \overline{AF}//\overline{CH}$, $\stackrel{\triangle}{\leftarrow} \overline{AP}//\overline{QC}$ ···②

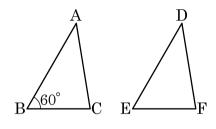
형이다.

② $\overline{AF} = \overline{CH}$, $\overline{AH}//\overline{FC}$

 $(4)\overline{\mathrm{AP}}//\overline{\mathrm{QC}}$, $\overline{\mathrm{AQ}}//\overline{\mathrm{PC}}$

따라서 두 쌍의 대변이 각각 평행하므로 □APCQ 는 평행사변

7. 다음 그림에서 $\triangle ABC \bigcirc \triangle DEF$ 일 때, $\angle D + \angle F$ 의 크기는?



①
$$60^{\circ}$$
 ② 90° ③ 100° ④ 110° ⑤ 120°

8. 다음 그림에서 $\overline{\mathrm{AD}}$ 가 $\angle \mathrm{A}$ 의 외각의 이등분선일 때, x+y 의 값은?



① 4

② 6

4 14

⑤ 20

$$6: 4 = (x+3): x$$
$$6x = 4x + 12$$

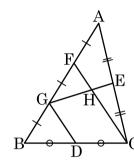
$$\therefore x = 6$$

$$6: y = 12:8$$

$$\therefore y = 4$$

따라서 x + y = 6 + 4 = 10이다.

9. 다음 그림과 같은 △ABC 가 주어졌을 때, 길이의 비가 다른 하나를 고르면?



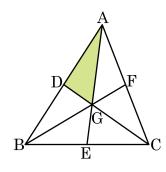
① $\overline{AF} : \overline{FG}$ ④ $\overline{AE} : \overline{EC}$

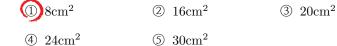
- \bigcirc $\overline{GF} : \overline{GB}$
- \bigcirc $\overline{BD} : \overline{DC}$

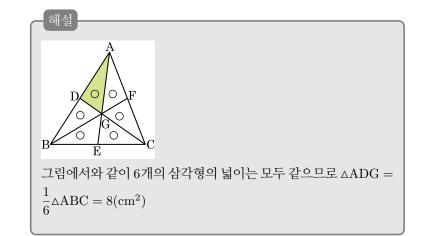
 $\overline{\mathrm{GH}}:\overline{\mathrm{HE}}$

- 해설
 - ③ $\triangle AGC$ 에서 점 H 는 무게중심이므로 \overline{GH} : $\overline{HE}=2:1$ 이다.
 - ①, ②, ④, ⑤는 모두 길이의 비가 1:1 이다.

10. 점 G 는 \triangle ABC 의 무게중심이고 \triangle ABC = 48cm^2 일 때, 색칠한 부분 의 넓이를 구하면?







11. 다음 중 옳은 것은?

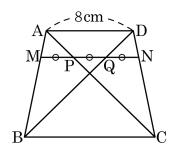
- ① 모든 직사각형은 정사각형이다.
- ② 모든 마름모는 정사각형이다.
- ③ 모든 평행사변형은 마름모이다.
- ④ 모든 사다리꼴은 평행사변형이다.
- ⑤ 모든 정사각형은 사다리꼴이다.

해설

모든 정사각형은 직사각형(또는 마름모 또는 평행사변형 또는 사다리꼴)이다. 모든 직사각형은 평행사변형(또는 사다리꼴)이다.

모든 마름모는 평행사변형(또는 사다리꼴)이다. 모든 평행사변형은 사다리꼴이다. 12. 다음 그림과 같은 사다리꼴 ABCD 에서 $\overline{AM}:\overline{MB}=\overline{DN}:\overline{NC}=1:3$ 이다.

 $\overline{\mathrm{MP}} = \overline{\mathrm{PQ}} = \overline{\mathrm{QN}}$ 일 때, $\overline{\mathrm{BC}}$ 의 길이를 구하여라.



① 9cm ② 12cm ③ 15cm ④ 18cm ⑤ 21cm

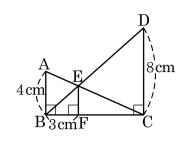
해설

 $\overline{AM}:\overline{MB}=\overline{DN}:\overline{NC}=1:3$ 에서 $3:4=\overline{MQ}:8$ 이다. 따라서 $\overline{MQ}=6$ 이다.

 $\overline{MQ} = 2\overline{MP}$ 이므로 $\overline{MP} = 3$ cm 이다.

 $1:4=3:\overline{\mathrm{BC}}$ 이므로 $\overline{\mathrm{BC}}=12$ 이다.

13. 다음 그림과 같이 ĀB//ĒF//CD 이고 ĀB = 4cm , ĀF = 3cm , CD = 8cm , ∠DCF = 90° 라 할 때, □EFCD의 넓이는?



 $32 \, \mathrm{cm}^2$

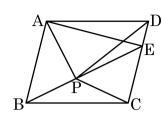
① 20cm^2 ② 24cm^2 ④ 36cm^2 ⑤ 40cm^2

 $\overline{AB} : \overline{CD} = \overline{AE} : \overline{CE} = 1 : 2$ 이다. i) $\overline{BE} : \overline{DE} = 1 : 2$ 이므로 $\overline{EF} : \overline{CD} = 1 : 3$ 이다.

따라서 $\overline{\mathrm{EF}}:8=1:3$ 이므로 $\overline{\mathrm{EF}}=\frac{8}{3}\,\mathrm{cm}$ 이다. ii) $1:2=3:\overline{\mathrm{CF}},\;\overline{\mathrm{CF}}=6(\,\mathrm{cm})$

$$\therefore \Box \text{EFCD} = \frac{1}{2} \times 6 \times \left(8 + \frac{8}{3}\right) = 3 \times \frac{32}{3} = 32(\text{cm}^2)$$

14. 다음 그림과 같은 평행사변형 ABCD에서 $\overline{BP}:\overline{PE}=3:4$ 이고, $\Delta DPC=100 cm^2$ 일 때, ΔABP 의 넓이는?



 $75 \mathrm{cm}^2$

① 30cm^2

(4) 70cm^2

 2 2 40cm^{2}

 360cm^2

해설

평행사변형 ABCD의 내부에 한 점 P를 잡을 때, $\Delta ABP + \Delta DPC = \frac{1}{2} \square ABCD \cdots \bigcirc$

² 또한, CD 위의 한 점 E를 잡을 때,

 $\triangle ABE = \frac{1}{2} \square ABCD \cdots \bigcirc$

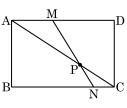
⑤, ⓒ에 의해 △ABP + △DPC = △ABE이고, △ABE = △ABP + △APE이므로

 $\triangle ABE = \triangle ABP + \triangle APE \circ \Box \Xi$ $\triangle APE = \triangle DPC = 100(cm^2)$

BP: PE = 3:4에서 △ABP: △APE = 3:4이므로 △ABP: 100 = 3:4

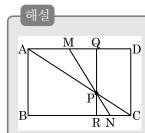
 $\therefore \triangle ABP = 75(cm^2)$

15. 다음 그림의 직사각형 ABCD 에서 \overline{AD} 를 2:3으로 나누는 점을 M. \overline{BC} 를 4:1로 나누는 점을 N \overline{MN} 과 \overline{AC} 와의 교점을 P 라고 한다. △PNC 의 넓이는 □ABCD 의 넓이의 몇 배인가? B



②
$$\frac{1}{31}$$
 배
⑤ $\frac{1}{34}$ 배

$$3\frac{1}{32}$$
 #



$$\overline{BN} : \overline{NC} = 4:1, \overline{NC} = \frac{1}{5}\overline{BC}$$

점 P를 지나고 \overline{AB} 에 평행한 직선이 \overline{AD} , \overline{BC} 와 만나는 점을 Q, R라고 하면 △APM ∽ △CPN

 $\overline{AM} : \overline{CN} = \overline{AP} : \overline{CP}$

 $\triangle APQ \hookrightarrow \triangle CPR$

 $\overline{PQ} : \overline{PR} = \overline{AP} : \overline{CP}$

 $\overline{\mathrm{AM}} : \overline{\mathrm{CN}} = \overline{\mathrm{PQ}} : \overline{\mathrm{PR}} = 2:1, \overline{\mathrm{PR}} = \frac{1}{2}\overline{\mathrm{AB}}$

$$\triangle PNC = \frac{1}{2} \times \frac{1}{5} \times \frac{1}{3} \square ABCD = \frac{1}{30} \square ABCD$$