1. 다음 이차방정식 중 서로 다른 두 실근을 갖는 것을 모두 고르면?

① $x^2 + 2x + 1 = 0$ ② $x^2 + 2x + 4 = 0$ ② $x^2 + 4x + 2 = 0$

③ □ ④ ¬, □ ⑤ □, □

해설

① ① ② 心

 $1^{2} - 1 \cdot 4 = -3 < 0 :$ 하근 © a = 1, b' = 2, c = 2

2² - 1 · 2 = 2 > 0 : 서로 다른 두 실근 (○)

2. 이차방정식 $x^2 - 6x + k = 0$ 이 중근을 가질 때, 실수 k의 값은?

① 1 ② 3 ③ 6 ④ 9 ⑤ 36

주어진 이차방정식이 중근을 가지므로

$$\frac{D}{4} = (-3)^2 - 1 \cdot k = 0$$

$$\therefore k = 9$$

- **3.** x에 대한 이차방정식 $x^2 6x + 2k 1 = 0$ 이 서로 다른 두 실근을 가질 때, 실수 k의 값의 범위는?

 - ① k < -2 ② -1 < k < 0 ③ -1 < k < 4

 $x^2 - 6x + 2k - 1 = 0$ 이 서로 다른 두 실근을 가지려면

 $\frac{D}{4} = 9 - 2k + 1 > 0$: 2k < 10 : k < 5

4. 이차방정식 $x^2 + 8x + 2k = 0$ 이 허근을 가지도록 하는 정수 k의 값의 최솟값은?

- ① 6 ② 7 ③ 8 ④9 ⑤ 10

이차방정식에서 허근을 가질 조건은

 $\frac{D'}{4} < 0$ 이어야 하므로,

 $16 - 2k < 0, \ 2k > 16, \ \therefore \ k > 8$:. 정수 *k* 의 최소값은 9

5. 이차방정식 $2x^2-6x+4=0$ 의 두 근을 α , β 라고 할 때, $\alpha^2+\beta^2$ 은?

 $\alpha + \beta = 3, \quad \alpha\beta = 2$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 9 - 4 = 5$ **6.** 이차방정식 $x^2 - 3x - (k - 1) = 0$ 이 실근을 갖게 하는 실수 k의 값으로 옳지 <u>않은</u> 것은?

① -2 ② -1 ③ 0 ④ 1 ⑤ 2

 $x^2 - 3x - (k - 1) = 0$ 이 실근을 가지므로 $D = (-3)^2 + 4 \cdot 1 \cdot (k - 1) \ge 0$

 $9 + 4k - 4 \ge 0, \ 4k \ge -5$

 $\therefore k \ge -\frac{5}{4}$

해설

- 7. 계수가 실수인 x에 대한 이차방정식 $x^2 + 2(k-a)x + k^2 + b 3 = 0$ 이 k의 값에 관계없이 항상 중근을 갖도록 하는 상수 a,b의 값은?
 - ① a = 1, b = 2(4) a = 0, b = 2 (5) a = -1, b = 3
- ② a = 0, b = 3 ③ a = -1, b = 2

해설

중근을 가지려면, 편별식이 0이다.

 $D' = (k-a)^2 - (k^2 + b - 3) = 0$ $\Rightarrow -2ak + a^2 - b + 3 = 0$

- 모든 k 에 대해 성립하려면 $-2a = 0, \ a^2 - b + 3 = 0$
- $\therefore \quad a = 0, b = 3$

8. 이차식 $ax^2 + 4x + 2a$ 가 x에 대한 완전제곱식이 되도록 하는 실수 a 의 값은?

① ± 1 ② $\pm \sqrt{2}$ ③ ± 2 ④ $\pm \sqrt{3}$ ⑤ $\pm \sqrt{5}$

주어진 식이 x에 대한 완전제곱식이 되려면 판별식 D=0이어야 한다.

판별식 D = 0이어야 한다 $\frac{D}{4} = 2^2 - a \cdot 2a = 0$

 $\begin{vmatrix} 4 - 2a^2 = 0, \ a^2 = 2 \\ \therefore a = \pm \sqrt{2} \end{vmatrix}$

 $.. u = \pm \sqrt{2}$

- 9. 이차방정식 $x^2 + ax + b = 0$ 의 두 근이 2, 3일 때, 이차방정식 $ax^2 + bx + 3 = 0$ 의 두 근의 합은?
 - ① $\frac{1}{5}$ ② $\frac{2}{5}$ ③ $\frac{3}{5}$ ④ $\frac{4}{5}$ ⑤ $\frac{6}{5}$

-a = 2 + 3 , a = -5 $b = 2 \cdot 3 = 6$ ∴ $-5x^2 + 6x + 3 = 0$ 에서

두 근의 합은 $\frac{6}{5}$

10. 이차식 $2x^2 - 4x + 3$ 을 복소수 범위에서 인수분해하면?

①
$$(x-3)(2x+1)$$

② $2\left(x-1-\frac{\sqrt{2}i}{2}\right)\left(x-1+\frac{\sqrt{2}i}{2}\right)$

$$\bigcirc (x + y)(2x + y)$$

$$(3) (x+3)(2x-1)$$

$$(4) 2\left(x+1-\frac{\sqrt{2}i}{2}\right)\left(x-1+\frac{\sqrt{2}i}{2}\right)$$

$$(5) 2\left(x-1-\frac{\sqrt{2}i}{2}\right)\left(x+1+\frac{\sqrt{2}i}{2}\right)$$

$$a = 2, b' = -2, c = 3$$

$$x = \frac{2 \pm \sqrt{4 - 6}}{2} = \frac{2 \pm \sqrt{2}i}{2} = 1 \pm \frac{\sqrt{2}}{2}i$$

$$a = 2, b' = -2, c = 3$$

$$x = \frac{2 \pm \sqrt{4 - 6}}{2} = \frac{2 \pm \sqrt{2}i}{2} = 1 \pm \frac{\sqrt{2}}{2}i$$

$$\therefore 2\left(x - 1 - \frac{\sqrt{2}}{2}i\right)\left(x - 1 + \frac{\sqrt{2}}{2}i\right)$$

- 11. x 에 대한 두 이차방정식 $x^2 2\sqrt{b}x + (2a+1) = 0 \cdots \bigcirc$ $x^2 2ax b = 0 \cdots \bigcirc$ 가 있다. \bigcirc 이 서로 다른 두 실근을 가질 때, \bigcirc 의 근을 판별하면? (단, a,b 는 실수이고, $b \ge 0$)

 - ② 궁근들 가신니
 - ③ 서로 다른 두 허근을 가진다.
 - ⑤ 한 개의 실근과 한 개의 허근을 가진다.

④ 판별할 수 없다.

- **12.** x에 대한 이차방정식 $x^2 = k(x-2) + a$ 가 실수 k의 값에 관계없이 항상 실근을 갖기 위한 실수 a의 값의 범위를 구하면?
 - ① $a \ge -2$ ② $a \ge 4$ ③ $a \le 4$ (4) $a \ge -4$ (5) $a \ge 2$

해설

주어진 이차방정식을 정리하면 $x^2 - kx + (2k - a) = 0$

실근을 가지려면 판별식 $D \ge 0$ 이어야 한다. $k^2 - 4(2k - a) \ge 0$

 $k^2 - 8k + 4a \ge 0$

위 부등식을 k에 대하여 정리하면 $(k-4)^2 + 4a - 16 \ge 0$

 $\frac{1}{2}$ 실수 k의 값에 관계없이 항상 성립하려면

판별식 $\frac{D}{4} \le 0$ 이거나, $4a-16 \geq 0(\because (k-4)^2 \geq 0)$ 이어야 한다.

따라서 $a \ge 4$

13. 이차방정식 $x^2-3x+1=0$ 의 두 근을 α,β 라 할 때, $\frac{\beta}{\alpha-1}, \frac{\alpha}{\beta-1}$ 을 두 근으로 하는 이차방정식은 $x^2 + ax + b = 0$ 이다. 이 때, a + b의 값은?

①3

해설

 $\therefore a + b = 4 - 1 = 3$

② 5 ③ 0 ④ -3 ⑤ -5

 $\alpha + \beta = 3, \ \alpha\beta = 1$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 9 - 2 = 7$ $a = -\left(\frac{\beta}{\alpha - 1} + \frac{\alpha}{\beta - 1}\right)$ $(\alpha - 1 + \beta - 1)$ $= -\frac{\beta(\beta - 1) + \alpha(\alpha - 1)}{(\alpha - 1)(\beta - 1)}$ $= -\frac{(\alpha^2 + \beta^2) - (\alpha + \beta)}{\alpha\beta - (\alpha + \beta) + 1}$ $= -\frac{7 - 3}{1 - 3 + 1} = 4$ $b = \frac{\alpha\beta}{(\alpha - 1) \cdot (\beta - 1)} = \frac{\alpha\beta}{\alpha\beta - (\alpha + \beta) + 1}$ $= \frac{1}{1 - 3 + 1} = -1$

- **14.** 이차방정식 $x^2+ax+b=0$ 의 두 근을 α , β 라 할 때, $\alpha+\frac{1}{\beta}$, $\beta+\frac{1}{\alpha}$ 을 두 근으로 하는 x의 이차방정식이 $x^2 + ax + b = 0$ 과 같다. a, b의 값을 구하면?
 - ① a = 3, b = -2 ② $a = 0, b = -\frac{1}{2}$ ② $a = 2, b = -\frac{1}{4}$ ⑤ $a = 1, b = \frac{1}{2}$

 - $x^2 + ax + b = 0$ 의 두 근이 α , β 이므로
 - $\alpha + \beta = -a \cdot \cdot \cdot \cdot \cdot$ ① $\alpha\beta = b \cdots 2$

 - $\alpha+rac{1}{eta},\ eta+rac{1}{lpha}$ 을 두 근으로 하는 이차방정식이 $x^2+ax+b=0$

③에서 $\alpha + \beta + \frac{\alpha + \beta}{\alpha \beta} = -a$

- $\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right) = -a \cdot \cdots \quad 3$ $\left(\alpha + \frac{1}{\beta}\right) \times \left(\beta + \frac{1}{\alpha}\right) = b \cdot \cdots \quad \textcircled{4}$
- $\therefore -a + \frac{-a}{b} = -a \quad \therefore -\frac{a}{b} = 0 \quad \therefore a = 0$
- ④에서 $\alpha\beta + \frac{1}{\alpha\beta} + 2 = b$, $b + \frac{1}{b} + 2 = b$,
- $\frac{1}{b} + 2 = 0 \quad \therefore \quad b = -\frac{1}{2}$ $\therefore a = 0, \ b = -\frac{1}{2}$

- 15. a,b,c는 모두 양수이다. 방정식 $ax^2-bx+c=0$ 의 해가 α,β 일 때, 방정식 $cx^2 - bx + a = 0$ 의 해를 구하면?

- ① α, β ② $-\alpha, -\beta$ ③ $\frac{1}{\alpha}, \frac{1}{\beta}$ ④ $-\frac{1}{\alpha}, -\frac{1}{\beta}$ ⑤ $\alpha, -\beta$

$$a \qquad a$$
$$cx^2 - bx + a = 0 \text{ odd}$$

$$\alpha + \beta = \frac{b}{a}, \ \alpha\beta = \frac{c}{a}$$

$$cx^2 - bx + a = 0 \text{ 에서}$$

$$(두 그의 할) = \frac{b}{c} = \frac{\alpha + \beta}{\alpha\beta} = \frac{1}{\alpha} + \frac{1}{\beta} \left(\therefore \frac{b}{c} = \frac{\frac{b}{a}}{\frac{c}{a}} \right)$$

$$(두 근의 곱) = \frac{a}{c} = \frac{1}{\alpha\beta}$$
 따라서 구하는 두 근은 $\frac{1}{\alpha}, \frac{1}{\beta}$ 이다.

$$ax^2 - bx + c = 0$$
의 양변을 $x^2 \neq 0$)으로 나누면
$$a - \frac{b}{x} + \frac{c}{x^2} = 0$$
 이 때,
$$\frac{1}{x} = t$$
라 놓으면, $ct^2 - bt + a = 0$
$$t = \frac{1}{x} = \frac{1}{\alpha}$$
 또는
$$\frac{1}{\beta}$$

$$t = \frac{1}{r} = \frac{1}{\alpha}$$
 또는

$$\therefore cx^2 - bx + a = 0 의 해는 \frac{1}{\alpha} 또는 \frac{1}{\beta} 이다.$$