- ② 3의 허수부분은 0이다.

1. 다음 설명 중 옳지 않은 것은?

③ $\sqrt{-2}$ 는 순허수이다.

(1) $\sqrt{-8} = 2\sqrt{2}i$

④ b = 1 이면 a + (b-1)i 는 실수이다. ⑤ 제곱하여 -3 이 되는 수는 $\pm \sqrt{3}i$ 이다.

- 실수 k에 대하여 복소수 $z = 3(k+2i) k(1-i)^2$ 의 값이 순허수가 되도록 k의 값을 정하면?

등식 (x+y)+(x-y)i=3-5i를 만족하는 실수 x, y에 대하여 x^2+y^2 의 값을 구하면? (단, $i = \sqrt{-1}$)

① 5 ② 8 ③ 13 ④ 17 ⑤ 25

실수 x, y 에 대하여 복소수 z = x + yi 가 $z\bar{z} = 4$ 를 만족할 때, $x^2 + y^2$ 의 값은? (단, \bar{z} 는 z의 켤레복소수이다.)

- 5. 복소수에 대한 다음 설명 중 옳은 것을 모두 찾으면?
 - 2 + i의 허수 부분은 2i 이다.
 - ② -5*i*는 순허수이다.
 - *i*³은 허수이다
 - - $1 + \sqrt{3}i$ 의 켤레복소수는 $1 \sqrt{3}i$ 이다. $1 - \frac{1}{i}$ 는 실수이다.

6. x = 1 + 2i, $y = \frac{1 + 2i}{1 - i}$, $z = \frac{1 - 2i}{1 - i}$ 일 때,xy + xz의 값을 구하면?

(3) -1 + 2i

(2) -1 - 2i

 \bigcirc -1 + *i*

(1) -1 + 3i

(4) -1-i

- 8. 등식 (1+i)z + (2z-3i)i = 0 을 만족하는 복소수 z 는?

②
$$-3+9i$$
 ③ $3-9i$

(1) 3 + 9i

 $i = \sqrt{-1}$

9. $\left(\frac{\sqrt{2}}{1-i}\right)^{2n} = -1$ 을 만족하는 자연수 n 의 값이 <u>아닌</u> 것은? (단,

10. 다음 <보기>에서 계산 중 잘못된 것을 모두 고르면? (단,
$$i = \sqrt{-1}$$
)

I. $\sqrt{-3}\sqrt{-3} = \sqrt{(-3)\cdot(-3)} = \sqrt{9} = 3$ II. $\sqrt{5}\sqrt{-2} = \sqrt{5\times(-2)} = \sqrt{-10} = \sqrt{10}i$

 $II. \frac{\sqrt{2}}{\sqrt{-6}} = \sqrt{\frac{2}{-6}} = \sqrt{-\frac{1}{3}} = \sqrt{\frac{1}{3}}i$

4 I, N 5 II, N

TV/

11. 복소수 z = 1 + 4i일 때, $\overline{x(2-i)} + y(1-i) = \overline{z}$ 가 성립하도록 하는 실수 x, y에 대하여 x + y의 값은? (단, \bar{z} 는 복소수 z의 켤레복소수이고, $i = \sqrt{-1}$

12.
$$\overline{z-zi}=1-i$$
 를 성립시키는 복소수 z 은?(단, \overline{z} 는 z 의 켤레복소수이 다.)

-i ② 0 ③ i ④ $\frac{3}{2} + \frac{1}{2}i$ ⑤ $\frac{3}{2} - \frac{1}{2}i$

13.
$$\frac{\sqrt{a+1}}{\sqrt{a}} = -\sqrt{\frac{a+1}{a}}$$
 일 때, $|a-1|+|a|+|a+1|$ 을 간단히 하면?

(5) a-2

(3) 2

①
$$-a+2$$
 ② $-a$

14. $i(x+i)^3$ 이 실수일 때, 실수 x의 값으로 옳지 않은 것을 모두 고르면? ② $\sqrt{3}$ (3) $-\sqrt{3}$

15. α , β 가 복소수일 때, 다음 중 옳은 것의 개수는?(단, $\bar{\alpha}$, $\bar{\beta}$ 는 각각 α , β 의 켤레복소수이고, $i = \sqrt{-1}$ 이다.)

©
$$\alpha^2 + \beta^2 = 0$$
이면 $\alpha = 0$, $\beta = 0$ 이다.

 \bigcirc $\alpha = \overline{\beta}$ 일 때, $\alpha\beta = 0$ 이면 $\alpha = 0$ 이다.

 \bigcirc $\alpha = \overline{\beta}$ 이면 $\alpha + \beta$, $\alpha\beta$ 는 모두 실수이다.

②
$$\alpha + \beta i = 0$$
이면 $\alpha = 0$, $\beta = 0$ 이다.