- 다음 설명 중 옳지 <u>않은</u> 것은? 1.
 - ② 3의 허수부분은 0이다.
 - ③ √-2 는 순허수이다.

 - 4b = 1 이면 a + (b-1)i 는 실수이다. ⑤ 제곱하여 -3 이 되는 수는 $\pm \sqrt{3}i$ 이다.

④ [반례] $a=i,\ b=1$ 이면 a+(b-1)i=i 이므로 순허수이

다.(거짓)

2. 실수 k에 대하여 복소수 $z = 3(k+2i) - k(1-i)^2$ 의 값이 순허수가 되도록 k의 값을 정하면?

① -2

- $\bigcirc 0$ 3 1 $\bigcirc 4$ 2 $\bigcirc 3$ 3

해설 z = 3(k+2i) - k(-2i)

 $=3k+(6+2k)i\Rightarrow$ 순하수

 $\therefore 3k = 0, \ k = 0$

등식 (x+y)+(x-y)i=3-5i를 만족하는 실수 x, y에 대하여 x^2+y^2 의 값을 구하면? (단, $i=\sqrt{-1}$) 3.

① 5 ② 8 ③ 13 ④ 17 ⑤ 25

복소수가 서로 같을 조건에 의하여

해설

x + y = 3, x - y = -5 위 두 식을 연립하여 풀면 x = -1, y = 4 $\therefore x^2 + y^2 = 17$

- **4.** 실수 x, y 에 대하여 복소수 z=x+yi 가 $z\bar{z}=4$ 를 만족할 때, x^2+y^2 의 값은? (단, \bar{z} 는 z 의 켤레복소수이다.)
 - ① 1 ② 2 ③ 3 ④ 4 ⑤ 5

해설 $z = x + yi \text{ 에서 } \overline{z} = x - yi \text{ 이므로}$ $z \cdot \overline{z} = (x + yi)(x - yi) = x^2 + y^2$ 주어진 조건에서 $z \cdot \overline{z} = 4$ 이므로 $x^2 + y^2 = 4$

- **5.** 복소수에 대한 다음 설명 중 옳은 것을 <u>모두</u> 찾으면?
 - ① 2+i의 허수 부분은 2i 이다.②-5i는 순허수이다.
 - $3i^3$ 은 허수이다.
 - 40 1 + $\sqrt{3}i$ 의 켤레복소수는 $1 \sqrt{3}i$ 이다.
 - ⑤ $1 \frac{1}{i}$ 는 실수이다.

① 2+i 의 허수부분: i(x)

② -5*i* 는 순하수 (○) ③ *i*³ = -*i* 하수(○)

 $3i^{3} = -i \text{ or } (\bigcirc)$ $4i + \sqrt{3}i = 1 - \sqrt{3}i (\bigcirc)$

⑤ $1 - \frac{1}{i} = 1 + i$ 복소수 (x)

6.
$$x = 1 + 2i$$
 , $y = \frac{1 + 2i}{1 - i}$, $z = \frac{1 - 2i}{1 - i}$ 일 때, $xy + xz$ 의 값을 구하면?

① -1 + 3i ② -1 - 2i ③ -1 + 2i ④ -1 - i ⑤ -1 + i

 $x = 1 + 2i, y = \frac{1 + 2i}{1 - i}, z = \frac{1 - 2i}{1 - i}$ $\therefore xy + xz = \frac{(1 + 2i)^2}{1 - i} + \frac{(1 - 2i)(1 + 2i)}{1 - i}$ $= \frac{-3 + 4i + 5}{1 - i}$ $= \frac{2 + 4i}{1 - i}$ = -1 + 3i

7.
$$i + 2i^2 + 3i^3 + \dots + 50i^{50}$$
의 값은?

- ① -26 25i ② -26 + 25i ③ 0
- 4 -25 + 26i 5 25 + 26i

$$i + 2i^{2} + 3i^{3} + \dots + 50i^{50}$$

$$= \left\{i + 2 \cdot (-1) + 3 \cdot (-i) + 4 \cdot 1\right\} + \left\{5i + 6 \cdot (-1) + 7 \cdot (-i) + 8 \cdot 1\right\} + \dots + \left\{45i + 46 \cdot (-1) + 47 \cdot (-i) + 48 \cdot 1\right\} + 49i + 50 \cdot (-1)$$

$$12(2 - 2i) + 49i - 50 = -26 + 25i$$

- 등식 (1+i)z + (2z-3i)i = 0 을 만족하는 복소수 z 는? 8.
- ③ 3 9i
- ① 3+9i ② -3+9i② -3+9i④ $\frac{3}{10} \frac{9}{10}i$ ③ $-\frac{3}{10} + \frac{9}{10}i$

해설 z = a + bi (a, b 는 실수)로 놓으면

 $(1+i)(a+bi) + \{2(a+bi) - 3i\} i = 0$

(a+bi+ai-b) + (2ai-2b+3) = 0(a-3b+3) + (3a+b)i = 0

복소수가 서로 같을 조건에 의하여

a - 3b + 3 = 0, 3a + b = 0두 식을 연립하여 풀면

$$a = -\frac{3}{10}, b = \frac{9}{10}$$
$$\therefore z = -\frac{3}{10} + \frac{9}{10}i$$

- 9. $\left(\frac{\sqrt{2}}{1-i}\right)^{2n} = -1$ 을 만족하는 자연수 n 의 값이 <u>아닌</u> 것은? (단, $i = \sqrt{-1}$)
 - ① 2 ② 6 ③8 ④ 10 ⑤ 14
 - $\left(\frac{\sqrt{2}}{1-i}\right)^{2n} = \left(\frac{2}{-2i}\right)^n = i^n$ $i^n = -1 \text{ 이 성립하려면 } n = 4m + 2 \text{ } (m \ge 0 \text{ })$ ③ : $8 = 4 \times 2 + 0$

 ${f 10.}$ 다음 <보기>에서 계산 중 $\underline{{}^{2}{}^{2}}$ 된 것을 모두 고르면? (단, $i=\sqrt{-1}$

I. $\sqrt{-3}\sqrt{-3} = \sqrt{(-3)\cdot(-3)} = \sqrt{9} = 3$ II. $\sqrt{5}\sqrt{-2} = \sqrt{5\times(-2)} = \sqrt{-10} = \sqrt{10}i$ III. $\frac{\sqrt{2}}{\sqrt{-6}} = \sqrt{\frac{2}{-6}} = \sqrt{-\frac{1}{3}} = \sqrt{\frac{1}{3}}i$ IV. $\frac{\sqrt{-10}}{\sqrt{2}} = \sqrt{\frac{-10}{2}} = \sqrt{-5} = \sqrt{5}i$

4 I, N

① I, I

② I, II ⑤ II, IV

3 I, II, IV

I. $\sqrt{-3}\sqrt{-3} = \sqrt{3}i\sqrt{3}i = \sqrt{9}i^2 = -3$:. 옳지 않다. II. $\sqrt{5}\sqrt{-2} = \sqrt{5}\sqrt{2}i = \sqrt{10}i$

:. 옳다. $\mathbb{I}. \frac{\sqrt{2}}{\sqrt{-6}} = \frac{\sqrt{2}}{\sqrt{6}i} = \sqrt{\frac{2}{6}} \cdot \frac{i}{i^2} = -\sqrt{\frac{1}{3}}i$

: 옳지 않다. $\text{IV. } \frac{\sqrt{-10}}{\sqrt{2}} = \frac{\sqrt{10}i}{\sqrt{2}} = \sqrt{\frac{10}{2}}i = \sqrt{5}i$

: 옳다.

11. 복소수 z=1+4i일 때, $\overline{x(2-i)}+y(1-i)=\overline{z}$ 가 성립하도록 하는 실수 x, y에 대하여 x+y의 값은? (단, \bar{z} 는 복소수 z의 켤레복소수이고, $i = \sqrt{-1}$)

②2 3 4 4 5 5 6 ① 0

z = 1 + 4i이므로 $\bar{z} = 1 - 4i$ 이다. 주어진 등식의 좌변을 정리하면

 $\overline{x(2-i)} + y(1-i) = \overline{x}(\overline{2-i}) + y(1-i)$

= x(2+i) + y(1-i) $\therefore x(2+i) + y(1-i) = 1-4i$

(2x + y) + (x - y)i = 1 - 4i

복소수가 서로 같을 조건에서

2x + y = 1, x - y = -4

위 두 식을 연립하여 풀면 x = -1, y = 3 $\therefore x + y = 2$

- 12. $\overline{z-zi}=1-i$ 를 성립시키는 복소수 z 은?(단, \overline{z} 는 z 의 켤레복소수이 다.)

- ① -i ② 0 ③ i ④ $\frac{3}{2} + \frac{1}{2}i$ ③ $\frac{3}{2} \frac{1}{2}i$

 $\overline{z - zi} = \overline{z(1 - i)}$ $= \overline{z} \cdot \overline{1 - i}$

 $\therefore z = i$

 $= \overline{z}(1+i)$

 $\bar{z}(1+i) = (1-i)$

 $\therefore \ \overline{z} = \frac{1-i}{1+i} = \frac{(1-i)^2}{(1+i)(1-i)} = -i$

13.
$$\frac{\sqrt{a+1}}{\sqrt{a}} = -\sqrt{\frac{a+1}{a}}$$
 일 때, $|a-1|+|a|+|a+1|$ 을 간단히 하면?

-a + 2 ② -a ③ 2 ④ a ⑤ a - 2

$$a+1 \ge 0, \ a < 0 \Rightarrow -1 \le a < 0$$

∴ $(\cancel{\Xi} \cancel{A}) = -(a-1) - (a) + (a+1)$
 $= -a+2$

- $14. \quad i(x+i)^3$ 이 실수일 때, 실수 x의 값으로 옳지 않은 것을 $\underline{\mathbf{PF}}$ 고르면?
 - ① 0 ② $\sqrt{3}$ ③ $-\sqrt{3}$
- **4**1

해설

$$i(x+i)^3 = i(x^3 + 3x^2i - 3x - i)$$

$$= (-3x^2 + 1) + (x^3 - 3x)i$$
실수가 되기 위해서는 하수부가 0
$$\therefore x^3 - 3x = 0$$

$$x(x^2 - 3) = 0$$

$$\therefore x = 0, \pm \sqrt{3}$$

15. α , β 가 복소수일 때, 다음 중 옳은 것의 개수는?(단, $\overline{\alpha}$, $\overline{\beta}$ 는 각각 α , β 의 켤레복소수이고, $i = \sqrt{-1}$ 이다.)

> \bigcirc $\alpha = \overline{\beta}$ 이면 $\alpha + \beta$, $\alpha\beta$ 는 모두 실수이다. \bigcirc $\alpha = \bar{\beta}$ 일 때, $\alpha\beta = 0$ 이면 $\alpha = 0$ 이다.

⑤ $\alpha^2 + \beta^2 = 0$ 이면 $\alpha = 0$, $\beta = 0$ 이다.

① 1개 ②2개

해설

③ 3개

④ 4개

⑤ 없다

 \bigcirc $\alpha = a + bi$ (a, b 는 실수)라 하면

 $\alpha = \overline{\beta}$ 이므로 $\beta = a - bi$ $\therefore \alpha + \beta = (a+bi) + (a-bi) = 2a$

 $\alpha\beta = (a+bi)(a-bi) = a^2 + b^2$ $\therefore \alpha + \beta, \alpha\beta$ 는 실수이다.

실수이므로 a = 0, b = 0 즉, = a + bi = 0이다.

 $\therefore \ \alpha^2 + \beta^2 = i^2 + 1^2 = 0$ ② :(반례) $\alpha=1,\;\beta=i$

© :(반례) $\alpha=i,\;\beta=1$

 $\therefore \ \alpha + \beta i = 0$

 \therefore ©, ②는 α , β 가 실수일 때만 성립한다.