
1. 가로, 세로의 길이가 각각 $7 \, \mathrm{cm}$, $19 \, \mathrm{cm}$ 인 직사각형의 대각선의 길이를 구하여라.

말: <u>cm</u>
 > 정답: √410 <u>cm</u>

V410<u>cm</u>

대각선의 길이는 √7² + 19² = √49 + 361 = √410(cm) ∴ √410 cm

다음 그림에서 $\angle ABC=45\,^\circ$, $\angle ADC=60\,^\circ$ 이고, $\overline{AB}=6\,\mathrm{cm}$ 일 때, \overline{AD} 의 길이를 구하여라. **2.**

 $\underline{\mathrm{cm}}$

ightharpoonup 정답: $2\sqrt{6}$ $\underline{\mathrm{cm}}$

▶ 답:

해설

삼각형 ABC에서 $\overline{\rm AB}$: $\overline{\rm AC}$ = $\sqrt{2}$: 1이므로 $\overline{\rm AC}$ = $\frac{6}{\sqrt{2}}$ = $3\sqrt{2}(\,\mathrm{cm})$ 삼각형 ACD에서 $\overline{\mathrm{AD}}:\overline{\mathrm{AC}}=2:\sqrt{3}$ 이므로 $\overline{\mathrm{AD}}=2\sqrt{6}(\,\mathrm{cm})$

3. 대각선의 길이가 $5\sqrt{3}$ cm 인 정육면체의 한 모서리의 길이를 구하여 라.

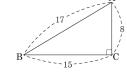
답:

<u>cm</u>

➢ 정답: 5cm

 $\sqrt{3}a = 5\sqrt{3} :: a = 5(\text{cm})$

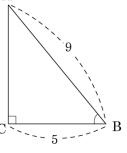
해설


4. 한 모서리의 길이가 24cm 인 정사면체의 부피를 구하여라.

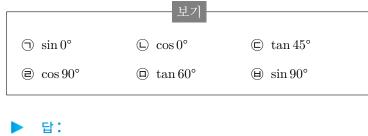
답: <u>cm³</u>

> 정답: 1152 √2 cm³

(부대) = $\frac{\sqrt{2}}{12} \times 24^3 = 1152\sqrt{2} \text{(cm}^3\text{)}$

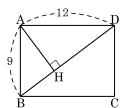

5. 다음 중 cosA 와 값이 같은 삼각비는?

① $\sin A$ ② $\sin B$ ③ $\cos B$ ④ $\tan A$ ⑤ $\tan B$


 $\sin B = \frac{8}{17}, \cos A = \frac{8}{17}$ 이므로, $\sin B = \cos A$ 이다.

6. 다음과 같이 ∠C가 90°인 직각삼각형 △ABC에서 cosB의 값은?

 $\cos B = \frac{\overline{BC}}{\overline{AB}} = \frac{5}{9}$


7. 다음 보기에서 삼각비의 값이 무리수인 것을 모두 골라라.

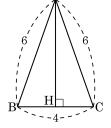
▷ 정답: □

8. 다음 그림의 직사각형 ABCD 에서 $\overline{AB}=9$, $\overline{\mathrm{AD}}=12$ 일 때, 꼭짓점 A 에서 대각선 BD 까지의 거리 $\overline{\mathrm{AH}}$ 를 구하여라. (소수로 표현할 것)

① 7.0 ② 7.1

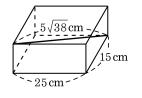
③ 7.2 ④ 7.4 ⑤ 7.6

 $\overline{BD} = \sqrt{9^2 + 12^2} = 15$


해설

 $9\times12=15\times\overline{\rm AH}$ $\therefore \overline{\mathrm{AH}} = 7.2$

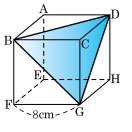
9. 다음 그림의 이등변삼각형 ABC 에서 높이 $\overline{\mathrm{AH}}$


해설

① $\sqrt{2}$ ② $2\sqrt{2}$ ③ $3\sqrt{3}$

 $\overline{AH} = \sqrt{6^2 - 2^2} = 4\sqrt{2}$

10. 다음 그림과 같이 대각선의 길이가 $5\sqrt{38}$ cm 인 직육면체 모양의 상자가 있다. 밑면인 직사 각형의 가로, 세로의 길이가 각가 25cm, 15cm 일 때, 이 상자의 높이는?

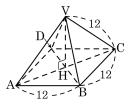

10

② $5\sqrt{10}$ ③ $10\sqrt{2}$ ④ $30\sqrt{3}$ ⑤ $30\sqrt{2}$

직육면체의 높이를 $x \, \mathrm{cm}$ 라 하면, $\sqrt{25^2 + 15^2 + x^2} = 5\sqrt{38}$ $\sqrt{625 + 225 + x^2} = \sqrt{950}$

양변을 제곱하면 $850 + x^2 = 950, \ x^2 = 100$ $\therefore x = 10 (\mathrm{cm})$

11. 다음 그림과 같은 정육면체를 세 꼭짓점 B, G, D를 지나는 평면으로 자를 때, △BGD 의 넓이를 구하여라.

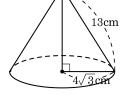

 답:
 cm²

 > 정답:
 32√3 cm²

 $\Delta \mathrm{BGD}$ 는 한 변이 $8\sqrt{2}$ 인 정삼각형이므로

(넓이) = $\frac{\sqrt{3}}{4} \times (8\sqrt{2})^2 = 32\sqrt{3} \text{(cm}^2)$

12. 다음 그림과 같이 정사각뿔의 꼭짓점 V에서 밑면에 내린 수선의 발을 H 라고 할 때, $\overline{\mathrm{VH}}$ 의 길이는?

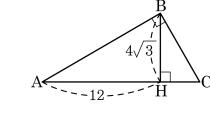

① $12\sqrt{6}$ ② $3\sqrt{6}$ ③ $36\sqrt{2}$ ④ $6\sqrt{2}$

⑤ $3\sqrt{2}$

$$\overline{\text{CH}} = \overline{\text{AC}} \times \frac{1}{2} = 12\sqrt{2} \times \frac{1}{2} = 6\sqrt{2}$$

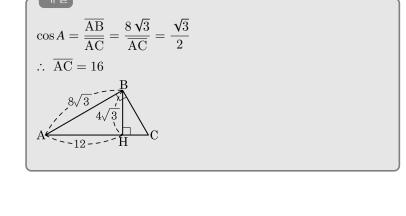
$$\Delta \text{VHC 에서 } \overline{\text{VH}} = \sqrt{12^2 - (6\sqrt{2})^2} = \sqrt{72} = 6\sqrt{2}$$

- 13. 다음 그림과 같이 반지름의 길이가 $4\sqrt{3}$ cm 이고 모선의 길이가 13 cm 인 원뿔의 부피는?


 $\boxed{3}176\pi\,\mathrm{cm}^3$

① $44\pi\,\mathrm{cm}^3$

- ② $88\pi \, \text{cm}^3$ $4 352\pi \, \text{cm}^3$
- - ⑤ $528\pi \, \text{cm}^3$


원뿔의 높이 $h=\sqrt{13^2-(4\sqrt{3})^2}=\sqrt{169-48}=\sqrt{121}=11(\,\mathrm{cm})$ 이다. 따라서 $V = \frac{1}{3} \times (4\sqrt{3})^2 \times \pi \times 11 = 176\pi (\text{cm}^3)$ 이다.

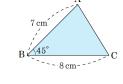
14. 다음 그림에서 $\cos A=\frac{\sqrt{3}}{2}$ 이고, $\overline{AH}=12,\;\overline{BH}=4\,\sqrt{3}\,\,\text{일 때, \overline{AC} 의 길이는?}$

① 10 ② 12 ③ 14

⑤ 18

- $\sin 30^{\circ} = \frac{1}{2}$ ② $\cos 30^{\circ} = \frac{\sqrt{3}}{2}$ ③ $\tan 45^{\circ} = 1$ ④ $\cos 45^{\circ} = \frac{\sqrt{2}}{2}$ ⑤ $\tan 60^{\circ} = \frac{\sqrt{3}}{3}$

 $\tan 60^{\circ} = \sqrt{3}$ 이다.


16. 다음 중 삼각비의 값의 대소 관계로 옳지 <u>않은</u> 것을 모두 고르면?

- \bigcirc $\sin 85^{\circ} > \sin 25^{\circ}$
- $3\sin 40^{\circ} > \cos 20^{\circ}$
- $4\cos 10^{\circ} < \cos 80^{\circ}$

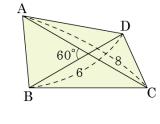
해설

- ③ $0^{\circ} \le x < 45^{\circ}$ 인 범위에서는, $\sin x < \cos x$ 이므로 $\therefore \sin 40^{\circ} < \cos 20^{\circ}$
- ④ $0^{\circ} \le x \le 90^{\circ}$ 인 범위에서는 x 의 값이 증가하면 $\cos x$ 의
- 값은 1 에서 0 까지 감소한다. $\therefore \cos 10^\circ > \cos 80^\circ$


17. 다음 그림의 △ABC의 넓이는?

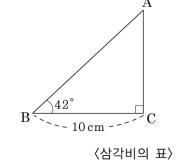
- ① $7\sqrt{2} \text{ cm}^2$ ② $14\sqrt{2} \text{ cm}^2$ ③ $21\sqrt{2} \text{ cm}^2$ ④ $28\sqrt{2} \text{ cm}^2$ ⑤ $56\sqrt{2} \text{ cm}^2$

 $\frac{1}{2} \times 7 \times 8 \times \sin 45^{\circ} = 28 \times \frac{\sqrt{2}}{2} = 14 \sqrt{2} (\text{cm}^2)$


18. 다음 그림과 같이 두 대각선이 이루는 각의 크기가 45° 인 등변사다리 꼴 ABCD 의 넓이가 $36\sqrt{2}$ cm² 일 때, \overline{AC} 의 길이를 구하면?

① 8 cm ② 10 cm ③ 12 cm ④ 14 cm ⑤ 16 cm

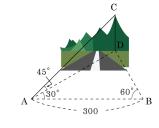
대각선 $\overline{AC} = \overline{BD} = x$ 라면 $x \times x \times \frac{1}{2} \times \sin 45 = 36\sqrt{2}$ $x^2 \times \frac{1}{2} \times \frac{\sqrt{2}}{2} = 36\sqrt{2}$ $x^2 = 144$ x = 12 (cm)


19. 다음 그림과 같은 사각형 ABCD의 넓이 를 구하면?

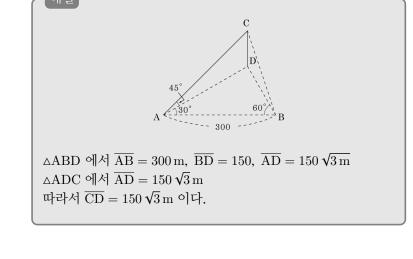
① $12\sqrt{3}$ ② $11\sqrt{3}$ ③ $10\sqrt{3}$ ④ $9\sqrt{3}$ ⑤ $8\sqrt{3}$

 $S = \frac{1}{2} \times 6 \times 8 \times \sin 60^{\circ}$ $= \frac{1}{2} \times 6 \times 8 \times \frac{\sqrt{3}}{2} = 12\sqrt{3}$

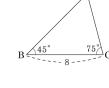
20. 다음 그림에서 $\triangle ABC$ 의 넓이를 구하면?



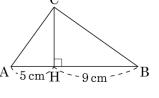
x	sin x	cos x	tan x
42°	0.66	0.74	0.90
43°	0.68	0.73	0.93
44°	0.69	0.72	0.97


- $4 72 \,\mathrm{cm}^2$ $5 90 \,\mathrm{cm}^2$
- ① $33 \, \text{cm}^2$ ② $37 \, \text{cm}^2$

 $\boxed{3}45\,\mathrm{cm}^2$


 $\overline{\mathrm{AC}}=x$ 라 하면 $\angle\mathrm{B}=42^\circ$ 이므로 $x=10 imes an 42^\circ=10 imes 0.9=9$ 따라서 $\triangle ABC$ 의 넓이는 $10 \times 9 \times \frac{1}{2} = 45 \text{(cm}^2)$ 이다. ${f 21.}$ 다음 그림에서 ${f AB}=300{
m m}$ 이고, A 지점에서 산의 꼭대기 C 지점을 쳐다본 각이 45° 일 때, 산의 높이 ${f CD}$ 를 구하면?

- ① $150 \sqrt{3}$ m ④ $300 \sqrt{3}$ m
- ② $150\sqrt{2}$ m
- ③ 150m
- ⑤ 300m


22. 다음 그림의 삼각형 ABC 에서 \angle B = 45°, \angle C = 75°, \overline{BC} = 8 일 때, \overline{AC} 의 길이를 구하면?

① $\frac{8\sqrt{2}}{3}$ ② $\frac{8\sqrt{3}}{3}$ ③ $\frac{8\sqrt{6}}{3}$ ④ $4\sqrt{3}$ ⑤ $4\sqrt{6}$

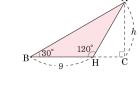
 $\frac{\angle A = 180^{\circ} - 45^{\circ} - 75^{\circ} = 60^{\circ}}{\overline{AC} \sin 60^{\circ} = 8 \sin 45^{\circ}}$ $\overline{AC} = \frac{8 \times \sin 45^{\circ}}{\sin 60^{\circ}} = \frac{8 \times \frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}$ $= \frac{8\sqrt{2}}{\sqrt{3}} = \frac{8\sqrt{6}}{3}$

23. 다음 그림에서 $\frac{\tan B}{\tan A}$ 의 값을 구하여라.

▶ 답:

ightharpoonup 정답: $rac{5}{9}$

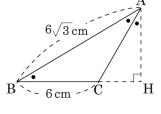
 $\tan B = \frac{\overline{CH}}{9}, \ \tan A = \frac{\overline{CH}}{5}$ $\therefore \ \tan B \div \tan A = \frac{\overline{CH}}{\frac{9}{9}} \div \frac{\overline{CH}}{\frac{5}{5}}$ $= \frac{\overline{CH}}{9} \times \frac{5}{\overline{CH}} = \frac{5}{9}$


24. $\overline{AB} = \overline{AC} = 2$, $\angle ABC = 30^\circ$ 인 이등변삼각형 ABC 의 점 B 에서 선분 AC 의 연장선 위에 내린 수선의 발을 H 라 할 때, 선분 BH 의 길이를 구하여라.

▷ 정답: √3

V 88 .

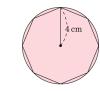
답:


점 A 에서 변 BC 위에 내린 수선의 발을 M 이라 하면 선분 MC 의 길이는 $2 \times \cos 30^\circ = \sqrt{3}$ 이므로 변 BC 의 길이는 $2\sqrt{3}$ 따라서 $\overline{BH} = \overline{BC} \times \sin 30^\circ = \sqrt{3}$

① $3\sqrt{3}$ ② $\frac{7\sqrt{3}}{2}$ ③ $4\sqrt{3}$ ④ $\frac{9\sqrt{3}}{2}$ ⑤ $5\sqrt{3}$

 $\angle BAH = 30^{\circ}$ 이므로 $\overline{BH} = \overline{AH} = 9$ $h = \overline{AH} \cdot \sin 60^{\circ}$ $= 9 \times \frac{\sqrt{3}}{2}$ $= \frac{9\sqrt{3}}{2}$

26. 다음 그림과 같은 삼각형의 넓이를 구하여라.



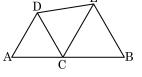
답:

▷ 정답: 9√3

 $\angle ABC = 30^{\circ}$ 이므로 $(\triangle ABC = 30^{\circ}) = \frac{1}{2} \times 6\sqrt{3} \times 6 \times \sin 30^{\circ}$ $= \frac{1}{2} \times 6\sqrt{3} \times 6 \times \frac{1}{2}$ $= 9\sqrt{3}$

27. 반지름의 길이가 4cm 인 원에 내접하는 정팔각형의 넓이는?

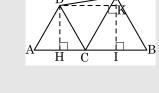
① $32 \sqrt{2} \text{ cm}^2$ ② $50 \sqrt{2} \text{ cm}^2$ ③ $75 \sqrt{2} \text{ cm}^2$ ④ $80 \sqrt{2} \text{ cm}^2$ ⑤ $100 \sqrt{2} \text{ cm}^2$


정팔각형은 두 변의 길이가 $4\mathrm{cm}$ 이고 그 사이에 끼인 각이 45° 인 삼각형 8 개로 이루어져 있다. 따라서 $S = \left(\frac{1}{2} \times 4 \times 4 \times \sin 45^{\circ}\right) \times 8 = 8 \times \frac{\sqrt{2}}{2} \times 8 =$

 $32\sqrt{2}$ (cm²) 이다.

 ${f 28}$. 길이가 $11{
m cm}$ 인 $\overline{
m AB}$ 위에 $\overline{
m AC}=5{
m cm},$ $\overline{
m BC}=$ $6 \mathrm{cm}$ 인 점 C 를 잡아서 다음 그림과 같이

정삼각형 DAC, ECB 를 그렸을 때, Δ DCE 의 둘레의 길이를 구하여라.

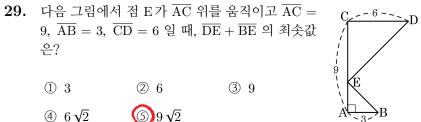

 $\underline{\mathrm{cm}}$

ightharpoonup 정답: $11 + \sqrt{31}$ $\underline{\text{cm}}$

답:

점 D 에서 $\overline{\mathrm{EI}}$ 에 내린 수선의 발을 K 라 하면

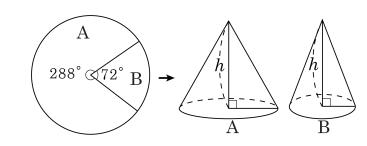
$$\overline{DH} = \frac{\sqrt{3}}{2} \times 5 = \frac{5\sqrt{3}}{2} \text{ (cm)}$$


$$\overline{EI} = \frac{\sqrt{3}}{2} \times 6 = 3\sqrt{3} \text{ (cm)}$$

$$\Delta EDK \text{ of } \overline{DK} = \frac{11}{2} \text{ cm}$$

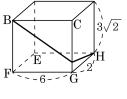
$$\overline{EK} = 3\sqrt{3} - \frac{5\sqrt{3}}{2} = \frac{\sqrt{3}}{2}(cm)$$

- 9, $\overline{AB}=3$, $\overline{CD}=6$ 일 때, $\overline{DE}+\overline{BE}$ 의 최솟값 은?
 - ① 3
- ② 6
- 3 9
- $4 6\sqrt{2}$



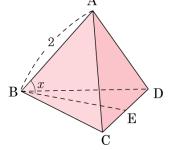
 $\overline{\mathrm{BE}} + \overline{\mathrm{ED}}$ 의 최솟값은 $\overline{\mathrm{D'B}}$ 의 거리이다. $\therefore \overline{D'B} = \sqrt{9^2 + 9^2} = 9\sqrt{2}$ 이다.

점 D 를 \overline{AC} 에 대해서 대칭이동시킨 점을 D'이라고 하면


30. 반지름의 길이가 10 인 원을 다음 그림과 같이 중심각이 288° , 72° 가 되도록 잘라내어 2 개의 고깔을 만들었다. 두 고깔 A, B 의 부피를 각각 x, y 라 할 때, $\frac{x}{y}$ 의 값은?

- ① $\frac{\sqrt{6}}{24}$ ② $\frac{\sqrt{6}}{12}$ ③ $2\sqrt{6}$ ④ $4\sqrt{6}$ ⑤ $6\sqrt{6}$
 - i) 호의 길이와 밑면의 둘레 $A:20\pi \times \frac{288^{\circ}}{360^{\circ}} = 16\pi$

 - $\therefore r_A = 8$ $B: 20\pi \times \frac{72^\circ}{360^\circ} = 4\pi$
 - $\therefore r_B = 2$ ii) 원뿔의 높이
 - A: 모선의 길이는 10, 밑면의 반지름의 길이는 8 $h_A = \sqrt{100 - 64} = \sqrt{36} = 6$ B : 선의 길이는 10 , 밑면의 반지름의 길이는 2
 - $h_B = \sqrt{100 4} = \sqrt{96} = 4\sqrt{6}$ iii) 원뿔의 부피
 - A : 밑면의 반지름의 길이는 8 , 높이는 6
 - $V_A = \frac{1}{3} \times 8 \times 8 \times \pi \times 6 = x$ B : 밑면의 반지름의 길이는 2 , 높이는 $4\sqrt{6}$
 - $V_B = \frac{1}{3} \times 2 \times 2 \times \pi \times 4\sqrt{6} = y$
 - $\therefore \frac{x}{y} = \frac{\frac{1}{3} \times 8 \times 8 \times \pi \times 6}{\frac{1}{3} \times 2 \times 2 \times \pi \times 4\sqrt{6}} = \frac{24}{\sqrt{6}} = \frac{24\sqrt{6}}{6} = 4\sqrt{6}$


31. 다음 그림과 같이 세 모서리의 길이가 각각 $2, 3\sqrt{2}, 6$ 인 직육면체에서 꼭짓점 B 에서 시작하여 \overline{CG} 위의 점을 지나 꼭짓점 H 에 이르는 최단거리를 구하여라.

달:▷ 정답: √82

해설

(최단거리) = $\overline{BH} = \sqrt{\overline{BF}^2 + (\overline{FG} + \overline{GH})^2}$ = $\sqrt{(3\sqrt{2})^2 + 8^2} = \sqrt{82}$ **32.** 다음 그림과 같은 한 모서리의 길이가 2 인 정사면체 A - BCD 에서 \overline{CD} 의 중점을 E, $\angle ABE = x$ 라 할 때, $\sin x$ 의 값이 $\frac{\sqrt{a}}{b}$ 이다. a + b 의 값을 구하시오.(단, a, b는 유리수)

답: ▷ 정답: 9

ΔBCD 는 정삼각형이므로 $\overline{BE} = \sqrt{3}$ 이고,

BE = V3 이고, 점 A 에서 \overline{BE} 로 내린 수선의 발을 점 H 라고 하면, 삼각형 BCD

점 A 에서 BE 도 대 의 무게중심이므로

 $\overline{BH} = \frac{2}{3} \times \sqrt{3} = \frac{2\sqrt{3}}{3}$

$$\overline{AH^2} = 2^2 - \left(\frac{2\sqrt{3}}{3}\right)^2 = \frac{8}{3}$$

$$\overline{AH} = \sqrt{\frac{8}{3}}$$

따라서
$$\sin x = \frac{\sqrt{6}}{3}$$
 이므로 $a+b=9$ 이다.

- **33.** $\tan(A 15^{\circ}) = 1$ 이고, $x^2 2x \tan A 3(\tan A)^2 = 0$ 의 두 근을 구하면? (단, 0° < A < 90°)
 - ① $3\sqrt{3}$, $2\sqrt{3}$
 - ② $-\sqrt{3}$, $3\sqrt{3}$ ③ $2\sqrt{3}$ $4 \ 2\sqrt{3}, \ \sqrt{3}$ $5 \ -\sqrt{3}, \ -3\sqrt{3}$

해설

 $an 45^\circ = 1$ 이므로 A - $15^\circ = 45^\circ$, A = 60° 이다. 따라서

 $x^2 - 2\tan 60^\circ x - 3(\tan 60^\circ)^2 = x^2 - 2\sqrt{3}x - 9 = 0$ 이다. 그슬 구하면 $(x-3\sqrt{3})(x+\sqrt{3})=0$, $x=3\sqrt{3}$, $-\sqrt{3}$ 이다.