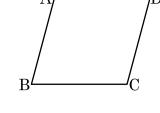
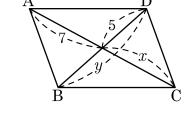

1. 다음 평행사변형 ABCD 에서 $\overline{AD}=3x+1$, $\overline{BC}=2x+3$, $\overline{CD}=x+7$ 일 때, \overline{AB} 의 길이를 구하여라.


 답:

 ▷ 정답:
 9

 $\overline{\mathrm{AD}} = \overline{\mathrm{BC}}$ 이므로

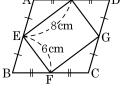
 $\begin{array}{c|c} 3x + 1 = 2x + 3, \ x = 2 \\ \overline{AB} = \overline{DC} = x + 7 = 2 + 7 = 9 \end{array}$


2. 다음 평행사변형 ABCD 에서 \angle A 와 \angle B 의 크기의 비가 7:5 일 때, \angle C 의 크기를 구하여라.

➢ 정답: 105 °

▶ 답:

 $\angle A = 180^{\circ} \times \frac{7}{12} = 105^{\circ}$ $\angle C = \angle A = 105^{\circ}$ **3.** 다음 그림에서 $\overline{\mathrm{AO}}=7,\overline{\mathrm{DO}}=5$ 일 때, □ABCD가 평행사변형이 되도록 하는 x + y의 값을 구하여라.



▶ 답: ▷ 정답: 17

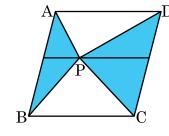
 $x = 7, y = 5 \times 2 = 10$ 이므로

x + y = 17

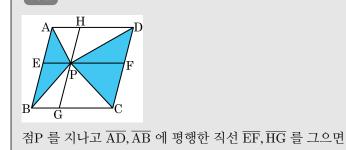
평행사변형 ABCD의 각 변의 중점을 E, F, G, H라 하고 그 점을 연결하여 □EFGH를 만들었다. □EFGH가 평행사변형이라면 FG+ HG의 값을 구하여라.

 ▶ 정답:
 14 cm

▶ 답:


 $\square EFGH$ 가 평행사변형이라면 $\overline{EH}=\overline{FG},\,\overline{EF}=\overline{HG}$ 이므로

해설


 $\overline{FG} + \overline{HG} = 6 + 8 = 14 (cm)$ 이다.

 $\underline{\mathrm{cm}}$

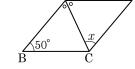
다음 그림과 같은 평행사변형 ABCD 내부의 한 점 P 에 대하여
 □ABCD 의 넓이가 84cm² 일 때, △ABP + △CDP 의 값은?

- ① 36cm^2 ④ 50cm^2
- $2 38 \text{cm}^2$
- 342cm^2
- \bigcirc 54cm²

 $\square AEPH$, $\square EBGP$, $\square PGCF$, $\square HPFD$ 는 모두 평행사변형이다. $\triangle ABP + \triangle PCD = \triangle APD + \triangle PBC$ 이므로 색칠한 부분의 넓이는 $\square ABCD$ 의 $\frac{1}{2}$ 이다. $\triangle ABP + \triangle CDP = 84 \times \frac{1}{2} = 42 (cm^2)$

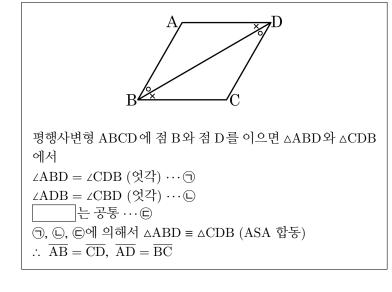
- **6.** 다음 중 마름모에 대한 설명으로 옳지 <u>않은</u> 것은?
 - 두 대각선이 직교한다.
 네 변의 길이가 모두 같다.

 - ③ 대각의 크기가 서로 같다.
 - ④ 두 대각선이 서로 다른 것을 이등분한다. ⑤ 네 각의 크기가 모두 같다.


네 각의 크기가 모두 같은 사각형은 정사각형과 직사각형이다.

해설

7. 평행사변형 ABCD 에서 $\angle x = ($)° 이다. () 안에 알맞은 수를 구하여라.

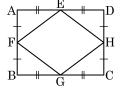

4 75

 $\angle x = \frac{1}{2} \angle A \ ()$ () $\angle A = 130^{\circ}$

$$\angle A = 130^{\circ}$$

 $\therefore \angle x = 65^{\circ}$

8. 다음은 '평행사변형에서 두 쌍의 대변의 길이는 각각 같다.' 를 증명한 것이다. □ 안에 들어갈 말로 알맞은 것은?

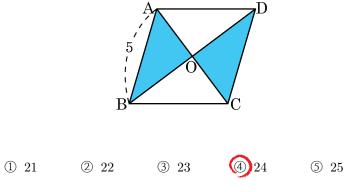


해설

 $\bigcirc \overline{3} \overline{BD}$ $\bigcirc \overline{DC}$ $\bigcirc \overline{DA}$

△ABD와 △CDB에서
∠ABD = ∠CDB (엇각), ∠ADB = ∠CBD (엇각), BD는 공통이
므로
△ABD ≡ △CDB (ASA 합동)이다.

9. 다음 그림은 직사각형 ABCD 의 각 변의 중점을 연결하여 □EFGH를 만들었다. □EFGH의 성질로 옳지 <u>않은</u> 것을 모두 고르면?(정답 2개)

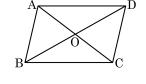


- ① 한 내각의 크기가 90° 이다. ② 두 대각선의 길이가 같다.
- ③ 두 대각선이 서로 이등분한다.
- ④ 두 대각선이 서로 수직 이등분한다.
- ⑤ 네 변의 길이가 모두 같다.

직사각형의 각 변의 중점을 연결하면 마름모가 된다. 마름모는

네 변의 길이가 모두 같고, 두 대각선이 서로 직교한다.

 ${f 10}$. 다음 평행사변형 ${
m ABCD}$ 에서 두 대각선의 길이의 합이 ${
m 14}$ 일 때, 어두 운 부분의 둘레의 길이는?



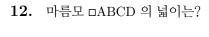
해설

 $\overline{\mathrm{AO}} + \overline{\mathrm{CO}} = \overline{\mathrm{AC}}, \ \overline{\mathrm{BO}} + \overline{\mathrm{OD}} = \overline{\mathrm{BD}}$ 이므로

어두운 부분의 둘레는 $2\overline{AB} + \overline{AC} + \overline{BD} = 10 + 14 = 24$ 이다.

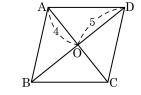
11. 다음 그림에서 □ABCD 는 평행사변형이고,
 점 O 는 두 대각선의 교점이다. □ABCD = 100cm² 일 때, △ABO 의 넓이는?

① 15cm² ④ 30cm² 20cm^2


 $325 \mathrm{cm}^2$

O Occii

 $\Im 35 \text{cm}^2$


 $\triangle BOC$ 와 $\triangle AOD$ 는 같다. $\triangle AOD + \triangle BOC = \triangle AOB + \triangle DOC$ 이다.

그러므로 ΔABO 의 넓이는 평행사변형 ABCD 의 $\frac{1}{4}$ 이므로 $25 \mathrm{cm}^2$ 이다.

① 10 ② 20 ③ 30

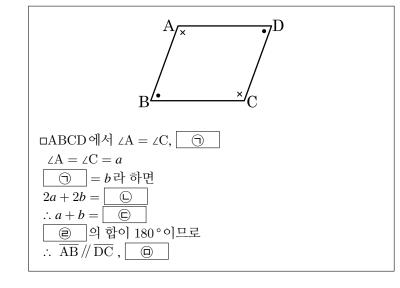
 $\frac{1}{2} \times 10 \times 8 = 40$

13. 다음 설명하는 사각형은 어떤 사각형인가?

- 네 변의 길이가 모두 같다.네 내각의 크기가 모두 같다.
- © 두 대각선의 길이가 같다.
- ② 두 대각선이 서로 수직이등분한다.

① 사다리꼴 ② 등변사다리꼴

④ 마름모 ⑤ 직사각형

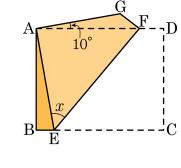

18-1 @ -1-1-1-0

정사각형은 네 변의 길이와 네 내각의 크기가 모두 같고, 두 대각선의 길이가 같고 서로 수직이등분한다.

해설

③ 정사각형

14. 다음은 '두 쌍의 대각의 크기가 각각 같은 사각형은 평행사변형이다.' 를 설명하는 과정이다. \bigcirc ~ \bigcirc 에 들어갈 것으로 옳지 <u>않은</u> 것은?



④@: 엇각 ⑤ @: AD//BC

① \bigcirc : $\angle B = \angle D$ ② \bigcirc : 360° ③ \bigcirc : 180°

동측내각의 합이 180°이다.

15. 다음 그림과 같이 직사각형 ABCD 의 꼭짓점 C 가 A 에 오도록 접었 다. $\angle GAF = 10^{\circ}$ 일 때, $\angle x$ 의 값을 구하여라.

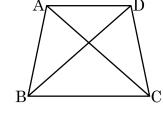
▷ 정답: 50°

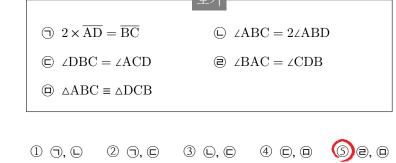
▶ 답:

 $\angle GAE = 90^{\circ}$ 이고 $\angle GAF = 10^{\circ}$ 이므로 $\angle FAE = 80^{\circ}$ 이다.

해설

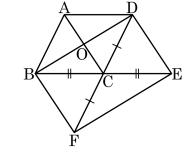
 $\angle FEC = \angle AFE = \angle AEF = \angle x$ 이므로 $\triangle AEF$ 는 이등변삼각형 이다. 따라서 (180° - 80°) ÷ 2 = 50° 이다. 따라서 $\angle x = 50^{\circ}$ 이다.


- 16. AB // DC, AD // BC 인 사각형 ABCD 가 다음 조건을 만족할 때, 직사각형이라고 말할수 없는 것은?
- $\begin{array}{c} A \\ \\ \end{array}$
- ① ∠A = 90°
- \bigcirc $\overline{AC} = \overline{BD}$
- $\overline{\text{3}}\overline{\text{AC}}\bot\overline{\text{BD}}$
- ④ 점 M 이 \overline{AD} 의 중점일 때, $\overline{MB} = \overline{MC}$ ⑤ 점 O 가 \overline{AC} 와 \overline{BD} 의 교점일 때, $\overline{AO} = \overline{BO}$


한 내각이 직각이거나 두 대각선의 길이가 같은 평행사변형은

해설

- 직사각형이다. 하지만 두 대각선이 직교하는 것은 마름모이다.


17. 다음 그림처럼 사각형 ABCD가 $\overline{\rm AD}\,/\!/\,\overline{\rm BC}$ 인 등변사다리꼴일 때, 다음 중 옳은 것은?

② △ABC ≡ △DCB이므로 ∠BAC = ∠CDB ③ ĀB = CD이고, BC는 공통, ∠B = ∠C이므로 △ABC ≡ △DCB이다. 18. 평행사변형 ABCD 의 두 변 BC, DC 의 연장선 위에 $\overline{BC}=\overline{CE}$, $\overline{DC}=\overline{CF}$ 가 되도록 두 점 E, F 를 잡을 때, \Box ABCD를 제외한 사각형이 평행사변형이 되는 조건은 보기에서 모두 몇 개인가?

○ 두 쌍의 대변이 각각 평행하다.

보기

- 두 쌍의 대변의 길이가 각각 같다.
- © 두 쌍의 대각의 크기가 각각 같다.
- ◉ 두 대각선이 서로 다른 것을 이등분한다.
- ◎ 한 쌍의 대변이 평행하고 그 길이가 같다.
- ① 1 개 **②** 2 개 ③ 3 개 ④ 4 개 ⑤ 5 개

해설

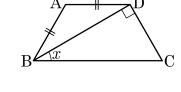
는 조건 @과 □BFED가 평행사변형이 되는 조건 @로 2개이다.

평행사변형이 되는 조건은 □ABFC,□ACED가 평행사변형이되

19. 다음 그림의 정사각형 ABCD 에서 ∠EBC = 32° 일 때, ∠APD 의 크기를 구하여라.

B 32° C

 ► 답:


 ▷ 정답:
 77 °

△DPC ≡ △BPC(SAS합동) 이므로 ∠PDC = 32° 이다.

해설

 $\angle APD = 32^{\circ} + 45^{\circ}$ $= 77^{\circ}$

20. 다음 그림과 같은 사다리꼴 ABCD 에서 $\overline{AB} = \overline{AD} = \overline{CD}$, $\angle BDC = 90$ °일 때, $\angle x$ 의 크기를 구하여라.

▷ 정답: 30_°

▶ 답:

 $\overline{\mathrm{AD}} /\!/ \overline{\mathrm{BC}}$ 이므로, $\angle \mathrm{ADB} = \angle x \ (\because \ oldsymbol{orange}$

해설

∠ADB = ∠ABD (∵ △ABD가 이등변삼각형) ∴ ∠B = ∠C = 2x △BCD 에서 3x = 90°

 $\therefore x = 30^{\circ}$