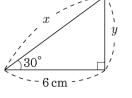

1. 다음 그림에서 x 의 값은?

- ① $7 + 8\sqrt{2}$ ② $7 + 8\sqrt{3}$ ③ $8 + 8\sqrt{2}$ ④ $8 + 8\sqrt{3}$ ⑤ $9 + 8\sqrt{2}$

$$\overline{DC} = \overline{AD} = 16 \sin 60^{\circ} = 16$$

$$\overline{DC} = \overline{AD} = 16 \sin 60^{\circ} = 16$$

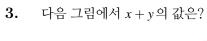

$$\overline{\overline{BD}} = 16\cos 60^{\circ} = 16 \times \frac{1}{2} = 8$$

$$\overline{\overline{DC}} = \overline{\overline{AD}} = 16\sin 60^{\circ} = 16 \times \frac{\sqrt{3}}{2} = 8\sqrt{3}$$

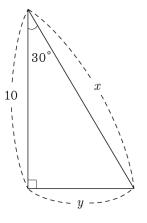
$$\therefore x = \overline{\overline{BD}} + \overline{\overline{CD}} = 8 + 8\sqrt{3}$$

2. 다음 그림과 같은 삼각형에서 x, y 를 각각 구하여라.

 $\underline{\mathrm{cm}}$



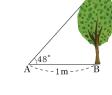
ightharpoonup 정답: $y = 2\sqrt{3}$ $\underline{\mathrm{cm}}$


 $x = \frac{6}{\cos 30^{\circ}} = 4\sqrt{3}$

▶ 답:

 $y = 6 \times \tan 30^{\circ} = 2\sqrt{3}$

- ① $8\sqrt{3}$ ② $9\sqrt{3}$
- $\boxed{3}10\sqrt{3}$
- (4) $11\sqrt{3}$ (5) $12\sqrt{3}$



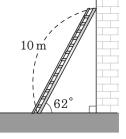
$$x = \frac{10}{\cos 30^{\circ}} = \frac{20}{\cos 30^{\circ}}$$

$$\cos 30^{\circ}$$
 $\cos 30^{\circ}$ $=$ $\cos 30^{\circ}$ $=$

$$x = \frac{10}{\cos 30^{\circ}} = \frac{20\sqrt{3}}{3}$$
$$y = 10 \times \tan 30^{\circ} = 10 \times \frac{1}{\sqrt{3}} = \frac{10\sqrt{3}}{3}$$
$$\therefore x + y = 10\sqrt{3}$$

4. 다음 그림과 같이 나무에서 1m 떨어진 A 지점에서 나무의 꼭대기 를 올려다본 각의 크기가 48° 였다. 나무의 높이를 구하여라. (단, $\sin 48^\circ = 0.74$, $\cos 48^\circ = 0.67$, $\tan 48^\circ = 1.11$ 로 계산한다.)

 $\underline{\mathbf{m}}$


▷ 정답: 1.11m

▶ 답:

해설

 $an 48^\circ = rac{(나무의 높이)}{\overline{AB}}$ (나무의 높이) = $\overline{AB} imes an 48^\circ = 1.11(m)$

5. 길이가 10 m 인 사다리가 다음 그림과 같이 벽에 걸쳐 있다. 사다리와 지면이 이루는 각의 크기가 62°일 때, 지면으로부터 사다리가 닿는 곳까지의 높이를 반올림하여 소수 첫째 자리까지 구하여라. (단, sin 62°= 0.8829, cos 62°= 0.4695, tan 62°= 1.8807)

답:▷ 정답: 8.8m

<u>m</u>

해설 ___

 $(\frac{1}{25}) = 10 \sin 62 = 10 \times 0.8829 = 8.8 \text{ (m)}$

- **6.** 다음 그림에서 ∠B = 30°일 때, △ABC의 넓이를 구하여라.
- B 30° C

답:

ightharpoonup 정답: $\frac{21}{2}$

해설

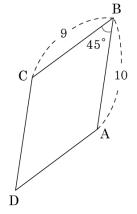
 $\triangle ABC = \frac{1}{2} \times 7 \times 6 \sin 30^{\circ}$ $= \frac{1}{2} \times 7 \times 6 \times \frac{1}{2}$ $= \frac{21}{2}$

7. 다음 그림과 같은 평행사변형 ABCD 의 넓이를 구하여라.

8 cm / 45° B ~ 7 cm ~ C

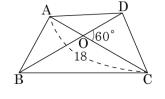
 답:
 cm²

 > 정답:
 28√2 cm²


 $8 \times 7 \times \sin 45^{\circ} = 8 \times 7 \times \frac{\sqrt{2}}{2}$ $= 28 \sqrt{2} (\text{cm}^{2})$

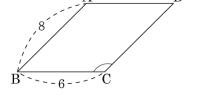
다음과 같은 평행사변형의 넓이를 구하 8.

① $41\sqrt{2}$


② $42\sqrt{2}$ ④ $44\sqrt{2}$ $\bigcirc 345\sqrt{2}$

③ $43\sqrt{2}$

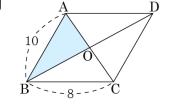
 $9 \times 10 \times \sin 45^{\circ} = 9 \times 10 \times \frac{\sqrt{2}}{2}$ $= 45\sqrt{2}$


다음 등변사다리꼴 ABCD에서 $\overline{AC}=$ 9. 18 cm, ∠DOC = 60°일 때, □ABCD의 넓이를 구하여라.

▶ 답: $\underline{\mathrm{cm}^2}$ ightharpoonup 정답: $81\sqrt{3}$ $ext{cm}^2$

 $\square ABCD$ 는 등변사다리꼴이므로 $\overline{AC} = \overline{BD} = 18 \, \mathrm{cm}$ 이다. $\Box ABCD = \frac{1}{2} \times 18 \times 18 \times \sin 60^{\circ}$ $= \frac{1}{2} \times 18 \times 18 \times \frac{\sqrt{3}}{2}$ $= 81 \sqrt{3} \text{ (cm}^2\text{)}$

10. 다음 그림의 평행사변형 ABCD의 넓이가 24 √2 cm² 일 때, ∠C의 크 기를 구하여라. (단. ∠C > 90°)



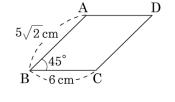
▶ 답: ▷ 정답: 135_°

해설

 $24\sqrt{2} = 6 \times 8 \times \sin B$ 에서 $\sin B = \frac{\sqrt{2}}{2}$, $\angle B < 90$ °이므로 ∠B = 45°이다. 따라서 ∠C = 180° - 45° = 135°

11. 다음은 $\angle B : \angle C = 1 : 3$ 인 평행사변형이 다. △ABO의 넓이를 구하여라.

▶ 답: **> 정답:** 10 √2


$$\angle B : \angle C = 1 : 3$$
이므로 $\angle B = 180^{\circ} \times \frac{1}{4} = 45^{\circ}$ 이다.
$$\triangle ABO = \frac{1}{4} \times \Box ABCD$$

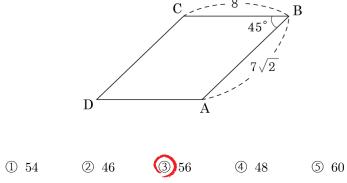
$$= \frac{1}{4} \times 10 \times 8 \times \sin 45^{\circ}$$

$$= \frac{1}{4} \times 10 \times 8 \times \frac{\sqrt{2}}{2}$$

$$= 10\sqrt{2}$$

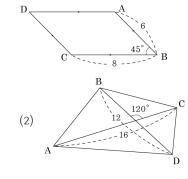
12. 다음 평행사변형의 넓이를 구하여라.

 ► 답:


 ▷ 정답:
 30 cm²

 $\underline{\mathrm{cm}^2}$

(넓이) = $5\sqrt{2} \times 6 \times \sin 45^{\circ}$

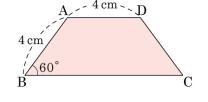

 $= 5\sqrt{2} \times 6 \times \frac{\sqrt{2}}{2} = 30(\text{cm}^2)$

13. 다음과 같은 평행사변형의 넓이는?

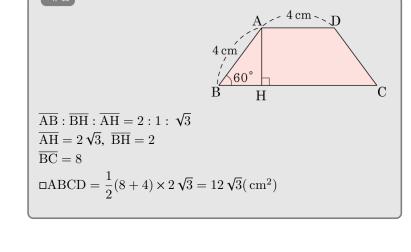
(넓이) =
$$7\sqrt{2} \times 8 \times \sin 45^{\circ}$$

= $7\sqrt{2} \times 8 \times \frac{\sqrt{2}}{2} = 56$

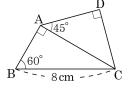
14. 다음과 같은 두 사각형의 넓이는 각각 얼마인가?


- ① $(1)22\sqrt{2},(2)43\sqrt{3}$ (3) $(1)22\sqrt{2},(2)48\sqrt{3}$
- ② $(1)22\sqrt{2}, (2)45\sqrt{3}$ (4) (1)24 $\sqrt{2}$, (2)45 $\sqrt{3}$
- \bigcirc (1)24 $\sqrt{2}$, (2)48 $\sqrt{3}$

$$(1) (ជ) (답) = 6 \times 8 \times \sin 45^{\circ}$$


$$= 6 \times 8 \times \frac{\sqrt{2}}{2} = 24\sqrt{2}$$
(2) (남아) = $\frac{1}{2} \times 12 \times 16 \times \sin(180^{\circ} - 120^{\circ})$

$$= \frac{1}{2} \times 12 \times 16 \times \frac{\sqrt{3}}{2} = 48\sqrt{3}$$


15. 다음 그림과 같은 등변사다리꼴의 넓이를 구하여라.

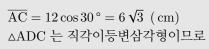
 $\underline{\mathrm{cm}^2}$ ▶ 답: ightharpoonup 정답: $12\sqrt{3}$ $ext{cm}^2$

16. 다음 그림의 □ABCD 에서 ∠BAC = ∠ADC = 90°이고, BC = 8 cm 일 때, CD 의 길이를 구하여라.

답:
 > 정답: 2√6cm

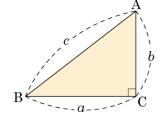
<u>cm</u>

 $\overline{
m AC} = 8\cos 30\,^{\circ} = 4\,\sqrt{3}\,\,\,({
m cm})$ $\triangle ADC$ 는 직각이등변삼각형이므로

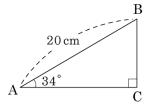

 $\overline{\text{CD}} = 4\sqrt{3}\sin 45^{\circ} = 4\sqrt{3} \times \frac{\sqrt{2}}{2} = 2\sqrt{6} \text{ (cm)}$

17. 다음 그림의 □ABCD 에서 ∠BAC = ∠ADC = 90°이고, \overline{BC} = 12 cm 일 때, \overline{CD} 의 길이는? ① $2\sqrt{6}$ cm

 \bigcirc 3 $\sqrt{6}$ cm


 $34\sqrt{6}\,\mathrm{cm}$ ④ $5\sqrt{6}$ cm $\bigcirc 6\sqrt{6}\,\mathrm{cm}$

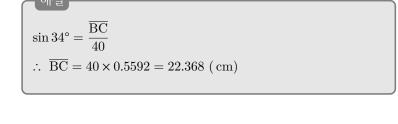
해설


 $\overline{\text{CD}} = 6\sqrt{3}\sin 45^{\circ} = 6\sqrt{3} \times \frac{\sqrt{2}}{2} = 3\sqrt{6} \text{ (cm)}$

18. 다음은 다음 그림과 같은 직각삼각형 ABC 에 대한 설명이다. 옳은 것은 모두 몇 개인가?

답:▷ 정답: 3<u>개</u>

19. 다음 직각삼각형 ABC 에서 ∠A = 34° 일 때, 높이 BC 를 구하여라. (단, sin 34° = 0.5592, cos 34° = 0.8290)


▷ 정답: 11.184 <u>cm</u>

▶ 답:

 $\sin 34^{\circ} = \frac{\overline{BC}}{20}$ $\therefore \overline{BC} = 20 \times 0.5592 = 11.184 \text{ (cm)}$

 $\underline{\mathrm{cm}}$

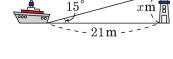
- 20. 다음 직각삼각형 ABC 에서 ∠A = 34° 일 때, 높이 BC 를 구하면? (단, sin 34° = 0.5592, cos 34° = 0.8290)
 ① 20.141 cm
 ② 21.523 cm
 - $322.368\,\mathrm{cm}$
- ④ 23.694 cm
- (3) 22.368 cm (5) 24.194 cm
- 4) 23.094 Cm

В

40 cm

21. 다음 그림과 같은 직각삼각형 ABC 에서 $\overline{\rm AC}$ 의 길이를 구하여라. (단, $\tan 78^\circ = 4.7046$)

A 78 20 C


▷ 정답: 94.092

▶ 답:

해설

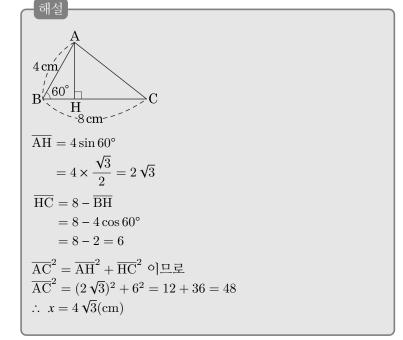
 $\overline{AC} = \overline{BC} \tan 78^{\circ} = 20 \times 4.7046 = 94.092$

22. 다음 그림과 같이 바다를 항해하는 배와 등대 사이의 거리가 21 m 이고, 배에서 등대의 꼭대기를 바라 본 각의 크기가 15°이었다면, 등대의 높이는?

- ① $\tan 15\,^{\circ}\,\mathrm{m}$ $4 21 \sin 15$ ° m
 - $\odot \cos 15$ ° m
- ② 21 tan 15 ° m ③ sin 15 ° m

 $\tan 15$ ° = $\frac{x}{21}$ 이므로 $x = 21 \tan 15$ ° m 이다.

23. 다음 그림과 같은 $\triangle ABC$ 에서 $\overline{AB}=4cm$, $\overline{BC}=8cm$, $\angle B=60^\circ$ 일 때, \overline{AC} 의 길이 는?

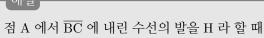


② 5√3cm
 ④ 5√2cm

⑤ 7cm

O 0 1-0--

24. 다음 그림의 평행사변형 ABCD 에서 $\overline{\rm AB}=6{\rm cm}$, $\overline{\rm BC}=10cm$, $\angle{\rm BCD}=$


120° 일 때, \overline{AC} 의 길이는?

① $\sqrt{67}$ ② $\sqrt{71}$

 $3 2\sqrt{19}$

 $4 \sqrt{86}$

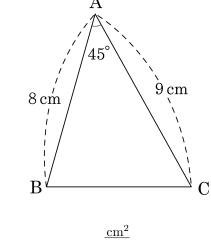
⑤ $\sqrt{95}$

 $\overline{AH} = 6 \times \sin 60^{\circ} = 6 \times \frac{\sqrt{3}}{2} = 3\sqrt{3}$

 $\overline{\mathrm{BH}} = 6 \times \cos 60^\circ = 6 \times \frac{1}{2} = 3$.: $\overline{\mathrm{CH}} = 10 - 3 = 7$ $\overline{\mathrm{AC}}^2 = \overline{\mathrm{AH}}^2 + \overline{\mathrm{CH}}^2$ 에서 $\overline{\mathrm{AC}} = \sqrt{27 + 49} = \sqrt{76} = 2\sqrt{19}$ 이다.

25. 다음 그림과 같이 ĀB 를 지름으로 하는 원 O 위의 한 점 C 를 지나는 접선과 지름 AB 의 연장선과의 교점을 D 라 하고, ĀB = 8 cm, ∠BAC = 30°일 때, △CBD 의 넓이를 구하여라.

말: <u>cm²</u>
 ▷ 정답: 4√3 <u>cm²</u>


 $\angle BCD = \angle BAC = 30^{\circ}$

 $\angle ACB = 90$ °이므로 $\angle ABC = 60$ ° $\triangle CBD$ 에서 $\angle BDC = \angle CBA - \angle BCD = 60$ ° - 30° = 30° $\therefore \overline{BD} = \overline{BC} = 8 \sin 30 = 8 \times \frac{1}{2} = 4 \text{ (cm)}$

 \therefore (\triangle CBD의 넓이) = $\frac{1}{2} \times 4 \times 4 \times \sin(180^{\circ} - 120^{\circ})$ = $4\sqrt{3}$ (cm²)

26. 다음 삼각형의 넓이를 구하여라.

ightharpoonup 정답: $18\sqrt{2}$ cm^2

답:

(넓이) =
$$\frac{1}{2} \times 8 \times 9 \times \sin 45^{\circ}$$

= $\frac{1}{2} \times 8 \times 9 \times \frac{\sqrt{2}}{2} = 18\sqrt{2} \text{ (cm}^2\text{)}$

27. 다음 삼각형의 넓이를 구하면?

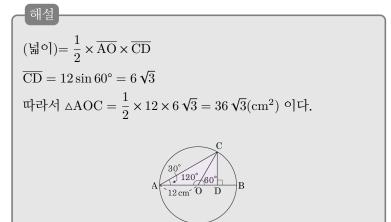
- ① $7\sqrt{2} \text{ cm}^2$ ② $7\sqrt{3} \text{ cm}^2$
- $\bigcirc 9\sqrt{2}\,\mathrm{cm}^2$

(텔이) $= \frac{1}{2} \times 2 \times 16 \times \sin(180^{\circ} - 135^{\circ})$ $= \frac{1}{2} \times 2 \times 16 \times \sin 45^{\circ}$ $= \frac{1}{2} \times 2 \times 16 \times \frac{\sqrt{2}}{2} = 8\sqrt{2} \text{ (cm}^2)$

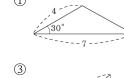
28. 다음 그림의 삼각형의 넓이를 구하여라. (단, 단위는 생략한다.)

 $\begin{array}{c} 135^{\circ} \\ 3 \text{ cm} \end{array} \quad \begin{array}{c} 4\sqrt{2} \text{ cm} \end{array}$

 답:
 cm²

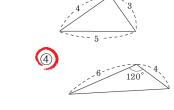

 정답:
 6 cm²

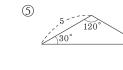
해설

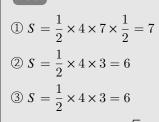

 $\triangle ABC = \frac{1}{2} \times \overline{AC} \times \overline{BC} \times \sin(180^{\circ} - 135^{\circ})$ $= \frac{1}{2} \times 3 \times 4 \sqrt{2} \times \frac{\sqrt{2}}{2} = 6$

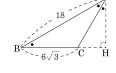
29. 다음 그림에서 \overline{AB} 는 원 O 의 지름이고 $\angle AOC = 120^\circ$, $\angle ADC = 90^\circ$, $\overline{AO} = 12$ cm 일 때, $\triangle AOC$ 의 넓이는?

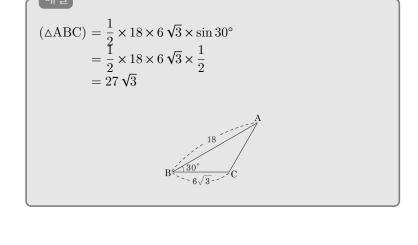
- ① $12\sqrt{3}$ cm² ② $24\sqrt{3}$ cm²
- $36\sqrt{3}$ cm² $48\sqrt{3}$ cm²
- \bigcirc $60\sqrt{3}$ cm²




30. 다음 삼각형 중에서 넓이가 두 번째로 큰 것을 골라라. (단, $\sqrt{3} = 1.732$ 로 계산한다.)



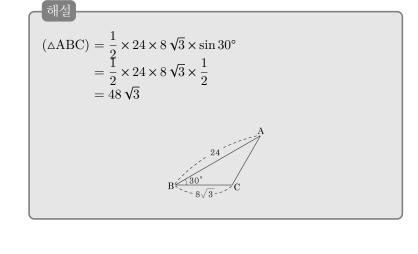



①
$$S = \frac{1}{2} \times 6 \times 4 \times \frac{\sqrt{3}}{2} = 6\sqrt{3} = 10.392$$

③ $S = \frac{1}{2} \times 5 \times 5 \times \frac{\sqrt{3}}{2} = \frac{25\sqrt{3}}{4} = 10.825$

31. 다음 그림과 같은 △ABC 의 넓이를 구하여라.

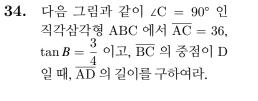
▶ 답:


> 정답: 27√3

32. 다음 그림과 같은 △ABC 의 넓이를 구하면?

B 8√3 - C - H

① $48\sqrt{6}$ ② $48\sqrt{5}$ ③ $48\sqrt{3}$ ④ $48\sqrt{2}$ ⑤ 48

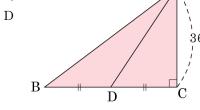


33. 다음 그림과 같이 두 대각선이 이루는 각의 크기가 45° 인 등변사다리 꼴 ABCD 의 넓이가 $36\sqrt{2} \text{cm}^2$ 일 때, $\overline{\text{AC}}$ 의 길이를 구하면?

① 8 cm ② 10 cm ③ 12 cm ④ 14 cm ⑤ 16 cm

대각선 $\overline{AC} = \overline{BD} = x$ 라면 $x \times x \times \frac{1}{2} \times \sin 45 = 36\sqrt{2}$ $x^2 \times \frac{1}{2} \times \frac{\sqrt{2}}{2} = 36\sqrt{2}$ $x^2 = 144$ x = 12 (cm)

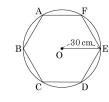
① $5\sqrt{10}$ ② $10\sqrt{11}$


③ $6\sqrt{12}$

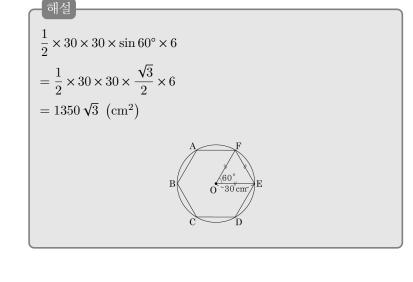
 $\boxed{\textcircled{5}}12\sqrt{13}$

 $4.5\sqrt{13}$

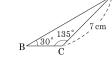
△ABC 에서



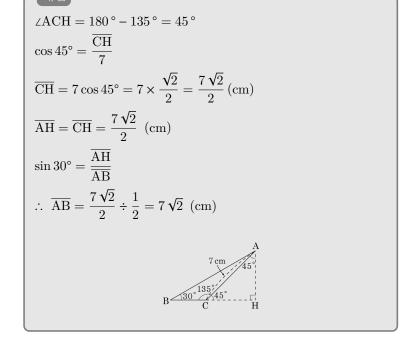
 $\tan B = \frac{36}{\overline{\mathrm{BC}}} = \frac{3}{4} \quad \therefore \overline{\mathrm{BC}} = 48$

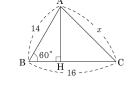

 $\therefore \overline{CD} = \frac{1}{2}\overline{BC} = 24$

따라서 $\triangle ADC$ 에서 $\overline{AD} = \sqrt{36^2 + 24^2} = \sqrt{1872} = 12\sqrt{13}$ 이다.


35. 다음 그림과 같이 반지름의 길이가 30 cm 인 원 O 에 내접하는 정육각 형의 넓이를 구하면?

- ① $1350 \, \text{cm}^2$
- ② $1350\sqrt{2}\,\mathrm{cm}^2$
- $31350\sqrt{3}\,\mathrm{cm}^2$
- $4 2700 \, \text{cm}^2$
- ⑤ $2700 \sqrt{2} \, \text{cm}^2$


36. 다음 그림의 △ABC 에서 ∠ACB = 135°, \overline{AC} = 7cm 이다. \overline{AB} 의 길이를 구하여라.


답:

<u>cm</u>

> 정답: 7√2 <u>cm</u>

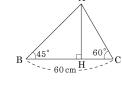
37. 다음 그림에서 x 의 길이를 구하여라.

답:

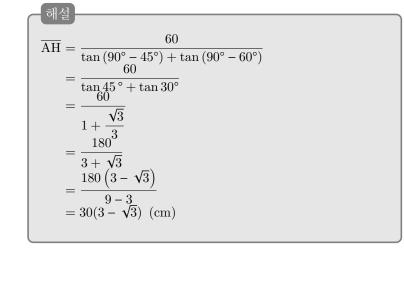
ightharpoons 정답: $2\sqrt{57}$

$$\overline{AH} = 14 \sin 60^{\circ} = 14 \times \frac{\sqrt{3}}{2} = 7\sqrt{3}$$

$$\overline{BH} = 14 \cos 60^{\circ} = 14 \times \frac{1}{2} = 7$$

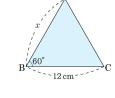

$$\overline{CH} = 16 - 7 = 9$$

$$x = \sqrt{\left(7\sqrt{3}\right)^2 + 9^2}$$
$$= \sqrt{147 + 81}$$
$$= \sqrt{228}$$


$$= \sqrt{147 + 81}$$

 $= \sqrt{228}$

$$=2\sqrt{57}$$


38. 다음 그림과 같은 $\triangle ABC$ 에서 $\angle B=45^\circ$, $\angle C=60^\circ$, $\overline{BC}=60 \mathrm{cm}$ 일 때, \overline{AH} 의 길이를 구하면?

- ① $30(2 \sqrt{2}) \text{ cm}$ ③ $30(2 - \sqrt{3}) \text{ cm}$
- ② $30(4 \sqrt{2})$ cm ④ $30(3 - \sqrt{3})$ cm
- ⑤ $30(4 \sqrt{3})$ cm
- (0 (0) 01

39. 다음 그림에서 $\triangle ABC$ 의 넓이가 $60\sqrt{3} \text{cm}^2$ 일 때, x 의 값을 구하여라.

 $\underline{\mathrm{cm}}$

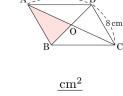
 답:

 ▷ 정답:
 20 cm

 $60\sqrt{3} = \frac{1}{2} \times x \times 12 \times \sin 60^{\circ}$ $= \frac{1}{2} \times x \times 12 \times \frac{\sqrt{3}}{2}$ $= 3\sqrt{3}x$ $\therefore x = \frac{60\sqrt{3}}{3\sqrt{3}} = 20(\text{cm})$

40. 한 내각이 150 ° 인 마름모의 넓이가 32 일 때, 이 마름모의 한 변의 길이를 구하여라.

▶ 답:


▷ 정답: 8

 $x \times x \times \sin(180^{\circ} - 150^{\circ}) = 32$ $x^2 \times \sin 30^{\circ} = 32$

 $x^2 \times \frac{1}{2} = 32$ $x^2 = 64$ x는 마름모의 한 변의 길이이므로 양수이므로

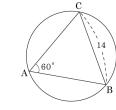
x = 8이다.

41. 다음 그림과 같은 평행사변형 ABCD 에서 \overline{AC} , \overline{BD} 의 교점을 O라고 하자. $\angle BCD=60^\circ$, $\overline{AD}=10$ cm, $\overline{CD}=8$ cm 일 때, $\triangle ABO$ 의 넓이를 구하여라.

 답:
 c

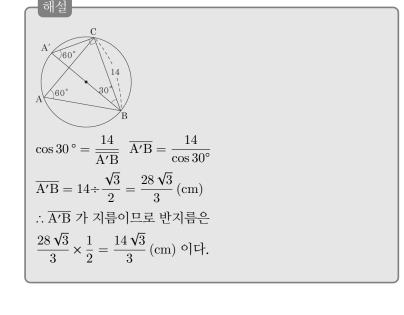
 ▷ 정답:
 10√3 cm²

(□ABCD의 넓이) = $10 \times 8 \times \sin 60^{\circ}$ = $10 \times 8 \times \frac{\sqrt{3}}{2}$ = $40\sqrt{3}$ (cm²) $\therefore \triangle ABO = 40\sqrt{3} \times \frac{1}{4} = 10\sqrt{3}$ (cm²) 42. 다음 그림과 같이 반지름의 길이가 6 인 원에 내접하는 정육각형의 넓이는?

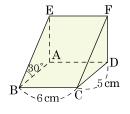


① $9\sqrt{3}$ ② $18\sqrt{3}$ ③ $27\sqrt{3}$ ④ $45\sqrt{3}$ ⑤ $54\sqrt{3}$

정육각형의 넓이 = 정삼각형의 넓이×6 이므로


따라서 $\left(\frac{1}{2} \times 6 \times 6 \times \sin 60^{\circ}\right) \times 6 = 54\sqrt{3}$ 이다.

43. $\triangle ABC$ 에서 $\angle A=60^\circ, \ \overline{BC}=14$ 일 때 $\triangle ABC$ 의 외접원의 반지름의 길이를 구하여라.



- $\begin{array}{c}
 10\sqrt{3} \\
 3 \\
 16\sqrt{3}
 \end{array}$ 4)
- ② $4\sqrt{3}$
 - \bigcirc $6\sqrt{3}$

44. 다음 그림과 같이 \overline{BC} = $6\,\mathrm{cm}$, \overline{CD} = 5 cm, ∠ABE = 30 인 삼각기둥이 있다. 이 삼각기둥의 모든 모서리의 합은?

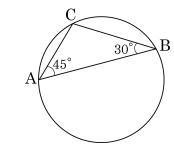
- ① $30(2+\sqrt{3})$ cm $3 \ 2 \left(13 - 5\sqrt{3}\right) \text{ cm}$
- ② $(28 + 10\sqrt{3})$ cm $4 \ 2\left(13+5\sqrt{3}\right) \text{ cm}$
- ⑤ $30(\sqrt{3}-1)$ cm

 $\overline{AE} = \tan 30^{\circ} \times \overline{AB} = \frac{\sqrt{3}}{3} \times 5 = \frac{5\sqrt{3}}{3} \text{ (cm)}$ $\overline{BE} = \frac{\overline{AB}}{\cos 30^{\circ}} = \frac{5}{\frac{\sqrt{3}}{2}} = \frac{10}{\sqrt{3}} = \frac{10\sqrt{3}}{3} \text{ (cm)}$

 $\overline{AB} = \overline{CD} = 5 \text{cm}, \ \overline{AE} = \overline{DF} = \frac{5\sqrt{3}}{3} \text{cm}$

 $\overline{BC} = \overline{AD} = \overline{EF} = 6\,\mathrm{cm}$

 $\overline{\mathrm{BE}}=\overline{\mathrm{CF}}=rac{10\,\sqrt{3}}{3}\,\mathrm{cm}$ 따라서 모든 모서리의 합은 18+10+


 $\frac{10\sqrt{3}}{3} + \frac{20\sqrt{3}}{3} = 28 + 10\sqrt{3}$ (cm) 이다.

45. 다음 그림과 같은 $\triangle ABC$ 에서 $\angle B=60^\circ$, $\overline{BC} = 6$, $\overline{AB} = 4$ 일 때, \overline{AC} 의 길이 를 구하는 과정이다. 만의 값이 옳지 않은 것은? 점 A 에서 \overline{BC} 에 내린 수선의 발을 H 라 하면 $\overline{\text{AH}} = 4 \times \boxed{(?)} = 4 \times \boxed{(나)}$ $=2\sqrt{3}$ $\overline{BH} = 4 \times \boxed{(\ddagger)} = 4 \times \boxed{(\ddagger)}$ = 2, $\overline{CH} = 6 - 2 = 4$ $\therefore \overline{AC} = \sqrt{\boxed{(\Box \dagger)}}^2 + 4^2 = 2\sqrt{7}$

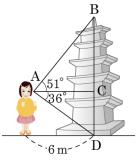
① $(7)\sin 60^{\circ}$ ② $(4)\frac{\sqrt{3}}{2}$ ④ (라) $\frac{1}{2}$ ⑤ $(\Box) 2 \sqrt{3}$

③(다)tan 60°

(다)에 $\cos 60^\circ$ 가 들어가야 한다. 점 A 에서 \overline{BC} 에 내린 수선의 발을 H 라 하면 $\overline{AH} = 4 \times \sin 60^\circ = 4 \times \frac{\sqrt{3}}{2} = 2\sqrt{3}$ $\overline{BH} = 4 \times \cos 60^\circ = 4 \times \frac{1}{2} = 2$, $\overline{CH} = 6 - 2 = 4$ $\therefore \overline{AC} = \sqrt{(2\sqrt{3})^2 + 4^2} = 2\sqrt{7}$ 46. 다음 그림과 같이 반지름의 길이가 2 인 원에 $\triangle ABC$ 가 내접하고 있다. $\angle A=45^\circ$, $\angle B=30^\circ$ 일 때, \overline{AB} 의 길이는?

- ① $\sqrt{2}$ ② $\sqrt{6}$ ② $\sqrt{2} + \sqrt{6}$ ③ $2(\sqrt{2} + \sqrt{6})$
- $\sqrt{3}$ $\sqrt{2} + \sqrt{6}$

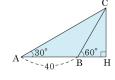
- $\overline{CA} = 4\cos 60^\circ = 2$


점 C 에서 \overline{AB} 에 내린 수선의 발을 H 라 하면 \overline{AH} = $\frac{\overline{CA}\cos 45^{\circ} = \sqrt{2} \circ | \overrightarrow{\Gamma}|.}{\overline{CH} = \overline{AH} = \sqrt{2}}$ $\frac{\overline{BH}}{\overline{BH}} = \frac{\overline{CH}}{\tan 30^{\circ}} = \sqrt{2} \times \sqrt{3} = \sqrt{6}$ $\therefore \overline{AB} = \sqrt{2} + \sqrt{6}$

탑을 올려다 본 각의 크기가 51°, 내려다 본 각의 크기가 36° 였다. 이 석탑 전체 의 높이를 구하여라. (단, $\tan 51$ ° = 1.2, $\tan 36$ ° = 0.7)

47. 태희는 석탑에서 6m 떨어진 곳에서 석

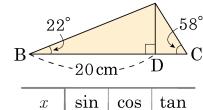
- ① 9.2 (m) ② 10 (m) ③ 11.4 (m) ④ 12.6 (m)
- ⑤ 13.2 (m)


해설

 $\overline{\overline{BC}} = 6\tan 51^{\circ} = 6 \times 1.2 = 7.2 \, (\mathrm{m})$ $\overline{CD} = 6\tan 36^{\circ} = 6 \times 0.7 = 4.2 \, (\mathrm{m})$

 $\therefore \overline{\mathrm{BD}} = \overline{\mathrm{BC}} + \overline{\mathrm{CD}} = 7.2 + 4.2 = 11.4 \, (\mathrm{m})$

48. 다음 그림의 $\triangle ABC$ 에서 $\angle A=30^\circ$, $\angle CBH=60^\circ$, $\overline{AB}=40$ 일 때, △ABC 의 넓이는?

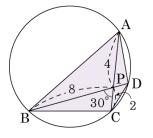


- ① $20\sqrt{3}$ ② $200\sqrt{3}$
- $\boxed{3}400\sqrt{3}$
- (4) $600\sqrt{3}$ (5) $800\sqrt{3}$

 $\overline{AH} = \frac{h}{\tan 30^{\circ}}, \overline{BH} = \frac{h}{\tan 60^{\circ}}$ $\overline{AB} = \overline{AH} - \overline{BH} = \frac{h}{\tan 30^{\circ}} - \frac{h}{\tan 60^{\circ}}$ $h\left(\frac{1}{\tan 30^{\circ}} - \frac{1}{\tan 60^{\circ}}\right) = 40, h\left(\frac{2}{\sqrt{3}}\right) = 40$

 $\therefore h = 40 \times \frac{\sqrt{3}}{2} = 20\sqrt{3}$ \triangle ABC 의 넓이는 $40 \times 20 \sqrt{3} \times \frac{1}{2} = 400 \sqrt{3}$

49. 다음 그림에서 $\triangle ABC$ 의 넓이를 구하여라.(단, 단위는 생략한다.)


x	sın	cos	tan
22°	0.37	0.93	0.40
58°	0.85	0.53	1.60

▷ 정답: 100

답:

 $\triangle ABD$ 에서 $\overline{AD} = \overline{BD} \tan B = 20 \tan 22^{\circ} = 20 \times 0.40 = 8 (\text{cm})$ $\triangle ACD$ 에서 $\overline{CD} = \frac{\overline{AD}}{\tan 58^{\circ}} = \frac{8}{1.6} = 5 \text{ (cm)}$ 이다. 따라서 $\triangle ABC = \frac{1}{2} \times (20 + 5) \times 8 = 100 \text{ (cm}^2)$ 이다.

50. 다음 그림과 같이 원에 내접하는 □ABCD 의 넓이를 구하여라.

ightharpoonup 정답: $rac{27}{2}$

 $\square ABCD$ 가 원에 내접하므로 $\overline{PA} \times \overline{PC} = \overline{PB} \times \overline{PD}$ 이므로 $\overline{PD} = 1$ 이다. 따라서 $\square ABCD$ 의 넓이는 $\frac{1}{2} \times (4+2) \times (8+1) \times \sin 30^\circ = \frac{1}{2} \times 6 \times 9 \times \frac{1}{2} = \frac{27}{2}$ 이다.