${f 1.}$ 사각형 ABCD 에서 ${f \overline{AB}}=5, {f \overline{BC}}=8$ 일 때, 다음 중 사각형 ABCD 가 평행사변형이 되는 조건은?

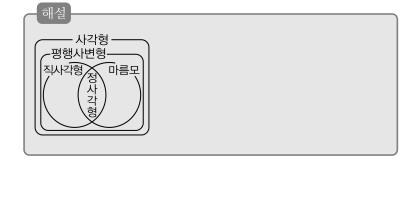
- ① $\overline{AC} = 5$, $\overline{CD} = 13$ ② $\overline{AD} = 5$, $\overline{CD} = 8$

평행사변형은 두 쌍의 대변의 길이가 각각 같다.

해설

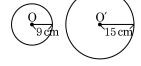
따라서 $\overline{AB} = \overline{CD} = 5$, $\overline{BC} = \overline{AD} = 8$ 이다.

- 2. 사다리꼴, 평행사변형, 직사각형, 마름모, 정사각형의 관계를 나타낸 것 중 옳지 <u>않은</u> 것은?
 - ① 정사각형은 사다리꼴이다.
 - ② 정사각형은 직사각형이면서 마름모이다.
 - ③ 직사각형은 평행사변형이다.
 - ④ 직사각형은 마름모이다. ⑤ 직사각형은 사다리꼴이다.



3. 다음 그림에서 두 원 O 와 O' 의 닮음비는?

① 1:2 ② 1:3 ③ 2:3



해설

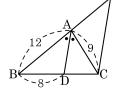
두 원 O 와 O' 의 반지름의 길이가 각각 9 cm , 15 cm 이므로

닮음비는 9 : 15 = 3 : 5 이다.

- **4.** 다음에서 \overline{AE} 의 길이는? (단, $\overline{AD} /\!\!/ \overline{EC}$)
 - **4**9

① 4

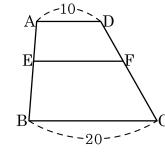
- ② 6 ⑤ 11
- 3 8



DA // CE 이므로 ∠DAC = ∠ACE (엇각), ∠BAD = ∠AEC

(동위각), $\angle BAD = \angle DAC$ 이므로 $\angle ACE = \angle AEC$ 따라서 $\triangle ACE$ 는 이등변삼각형이므로 $\overline{AE} = \overline{AC}$ 이다. 따라서 \overline{AE} 의 길이는 9 이다.

다음 그림의 사다리꼴에서 $\overline{
m AD}=10$, $\overline{
m BC}=20$ 이다. $\overline{
m AE}:\overline{
m EB}=$ **5.** 2:3일 때, $\overline{\mathrm{EF}}$ 의 길이는?



① 13

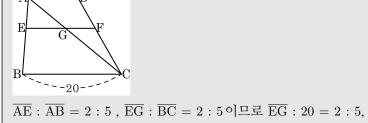
② 13.5

314

4 14.5

⑤ 15

점 A 에서 점 C로 선을 긋고, \overline{EF} 에 생긴 교점을 G 라고 하면

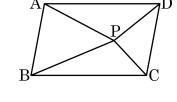


 $\overline{\mathrm{EG}} = 8$ 이다. $\overline{CF}:\overline{CD}=3:5$, $\overline{GF}:\overline{AD}=3:5$ 이므로 $\overline{GF}:10=3:5$,

 $\overline{\mathrm{GF}}=6$ 이다.

 $\therefore \ \overline{\mathrm{EF}} = 8 + 6 = 14$

다음 그림과 같이 평행사변형 ABCD의 내부에 한 점 P를 잡을 때, 6. □ABCD의 넓이는 60cm² 이고, △ABP의 넓이는 △CDP의 넓이의 2 배일 때, ΔCDP의 넓이를 구하면 ?



 \bigcirc 5cm² $\textcircled{4} \ \ 20 \mathrm{cm}^2$ 210cm^2

 315cm^2

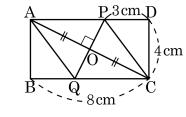
 \bigcirc 25cm²

내부의 한 점 P에 대하여 $\frac{1}{2}$ \square ABCD = \triangle PAB + \triangle PCD = △PAD + △PBC 이므로

 $\triangle ABP + \triangle CDP = \frac{1}{2} \square ABCD$ 이다.

 $\triangle ABP = 2\triangle CDP$ 이므로 $3\triangle CDP = \frac{1}{2}\Box ABCD$ $\therefore \ \triangle CDP = \frac{1}{6} \square ABCD = 10 (cm^2)$

7. 다음 그림과 같은 직사각형 ABCD 에서 \overline{PQ} 는 대각선 AC 의 수직이 등분선이다. \Box AQCP 의 넓이는?



- 4 $24\,\mathrm{cm}^2$
- $2 18 \,\mathrm{cm}^2$ \bigcirc 28 cm²
- $\fbox{3}20\,\mathrm{cm}^2$

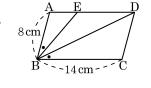
□AQCP 는 마름모이므로

 $\triangle \mathrm{ABQ} \equiv \triangle \mathrm{CDP} \ (\mathrm{RHS})$ $\Box AQCP = \Box ABCD - 2\triangle ABQ$

 $= 8 \times 4 - 2 \times \frac{1}{2} \times 3 \times 4$

 $=32-12=20(\mathrm{\,cm^2})$

- 다음 그림과 같은 평행사변형 ABCD 에서 8. $\angle ABE = \angle CBD$ 일 때, \overline{DE} 의 길이를 구하
 - ① $\frac{46}{7}$ cm ② $\frac{56}{7}$ cm ③ $\frac{66}{7}$ cm ④ $\frac{76}{7}$ cm ⑤ $\frac{86}{7}$ cm

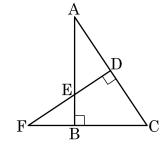


△ABE ∽ △CBD

$$\overline{ABE} = \overline{AE} = \overline{AE} : \overline{CD}$$

 $8: 14 = \overline{AE} : 8, \overline{AE} = \frac{32}{7} (\text{cm})$
 $\therefore \overline{DE} = 14 - \frac{32}{7} = \frac{66}{7} (\text{cm})$

다음 그림에서 ∠ABC = ∠FDC = 90° 일 때, 다음 중 서로 닮음이 9. <u>아닌</u> 것은?



4 $\triangle FBE$

① $\triangle ABC$

② △FDC ⑤ △EBC

 $\triangle ABC$ 와 $\triangle FDC$ 에서

해설

 $\angle ABC = \angle FDC = 90^{\circ}$, $\angle C$ 는 공통 ∴ △ABC ∽ △FDC (AA 닮음) $\triangle ABC$ 와 $\triangle ADE$ 에서 $\angle ABC = \angle ADE = 90^{\circ}$, $\angle A$ 는 공통

∴ △ABC∽△ADE (AA 닮음) △ABC 와 △FBE에서

 $\angle ABC = \angle FBE = 90^{\circ}$

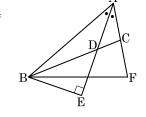
 $\angle A = 90^{\circ} - \angle C = \angle F$

∴ △ABC∽△FBE (AA 닮음)

 ${f 10.}$ 다음 그림에서 ${f AD}$ 는 $\angle {f A}$ 의 이등분선이고 $\overline{AB} = 3\overline{AC}$, $\overline{AC} = \overline{CF}$ 이다. $\triangle ADC =$ $30\mathrm{cm}^2$ 일 때, $\Delta \mathrm{DBE}$ 의 넓이를 구하면?

 $\odot 60\,\mathrm{cm}^2$ $3 70 \,\mathrm{cm}^2$

 $90 \, \mathrm{cm}^2$ $4 80 \, \mathrm{cm}^2$

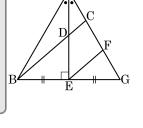


 $\overline{\mathrm{AF}}$ 의 연장선과 $\overline{\mathrm{BE}}$ 의 연장선의 교

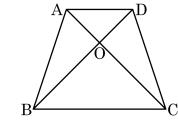
해설

점을 G 라고 하면 $\overline{\mathrm{BE}}$ = $\overline{\mathrm{EG}}$, $\overline{\mathrm{AC}}$ = $\overline{\mathrm{CF}} = \overline{\mathrm{FG}}$ 이다. $\overline{\mathrm{AB}} : \overline{\mathrm{AC}} = \overline{\mathrm{BD}} : \overline{\mathrm{DC}}$ $\triangle ABD = 3\triangle ADC$ $\overline{\mathrm{AD}} = \overline{\mathrm{DE}}$ 이므로 $\triangle \mathrm{ABD} = \triangle \mathrm{DBE}$ 이

다. \therefore $\triangle DBE = 3\triangle ADC = 90(\text{ cm}^2)$



11. 다음 그림에서 사다리꼴 ABCD 는 $\overline{AD}//\overline{BC}$, \overline{AO} : $\overline{CO}=1:2$ 이고 사다리꼴 ABCD 의 넓이가 $27\mathrm{cm}^2$ 일 때, \triangle ABO 의 넓이는?



 $6cm^{2}$ 4 $9cm^{2}$

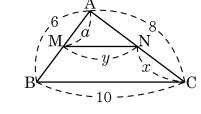
② 7cm^2 ③ 10cm^2

 3 8cm^2

□ABCD = △AOD + △DOC + △OBC + △ABO 이다.

 $\triangle AOD$ 의 넓이를 a 라고 하면, $1:2=a:\triangle DOC$, $\triangle DOC=2a$ $\triangle DOC=\triangle ABO=2a$, $1:2=2a:\triangle BOC$, $\triangle BOC=4a$ $\Box ABCD=a+2a+2a+4a=9a=27 {
m cm}^2$, $a=3 {
m cm}^2$ $\therefore \triangle ABO=2a=6 {
m cm}^2$

12. 다음 그림의 $\triangle ABC$ 에서 $\overline{AB}, \ \overline{AC}$ 의 중점이 각각 M, N이고, a=3이라고 할 때, 식의 값이 나머지와 <u>다른</u> 것은?



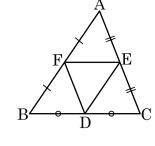
- ① y-a ② $\frac{8-x}{2}$ ③ $\frac{8-a}{3}$ ③ $\frac{2}{3}(8-y)$
- $\Im 2(x-a)$

\overline{AB} , \overline{AC} 의 중점이 M, N 이므로

 $y = \frac{1}{2} \times 10 = 5$, $x = \frac{1}{2} \times 8 = 4$ 이다.

$$\begin{array}{c}
y - 2 \times 10 - 6, x - 2 \times 6 - 4 & 14 \\
\hline
0, y - a = 5 - 3 = 2 \\
\hline
2, \frac{8 - x}{2} = \frac{8 - 4}{2} = 2 \\
\hline
3, 2(x - a) = 2(4 - 3) = 2 \\
\hline
4, \frac{8 - a}{3} = \frac{8 - 3}{3} = \frac{5}{3}
\end{array}$$

13. 다음 그림에서 점 D, E, F 는 각각 \overline{BC} , \overline{CA} , \overline{AB} 의 중점이다. ΔDEF 의 넓이가 $3\mathrm{cm}^2$ 일 때, $\Delta\mathrm{ABC}$ 의 넓이는?



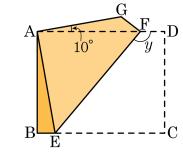
- 12cm^2 $\textcircled{4} \ 15 \mathrm{cm}^2$
- \bigcirc 16cm^2
- $3 14 \text{cm}^2$

 $2 13 \text{cm}^2$

 $\triangle {\rm AFE} \equiv \triangle {\rm BDF} \equiv \triangle {\rm DCE} \equiv \triangle {\rm FED}$ (SSS 합동) 이므로 $\triangle {\rm ABC}$

의 넓이는 $4 \times \Delta DEF = 4 \times 3 = 12(cm^2)$ 이다.

14. 다음 그림과 같이 직사각형 ABCD 의 꼭짓점 C 가 A 에 오도록 접었다. $\angle GAF = 10^{\circ}$ 일 때, $\angle x$ 는?



⑤130°

 $\angle GAE = \angle GAF + \angle EAF = 90^{\circ}, \angle BAF = \angle BAE + \angle EAF = 90^{\circ}$ 인데 $\angle \mathrm{EAF}$ 는 공통이므로 $\angle \mathrm{GAF} = \angle \mathrm{BAE} = 10^\circ$

따라서 △ABE 에서 $\angle AEB = 180^{\circ} - (90^{\circ} + 10^{\circ}) = 80^{\circ}$ 이다.

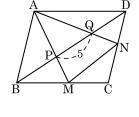
① 110° ② 115° ③ 120° ④ 125°

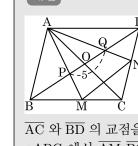
∠FEC = ∠FEA (접은각),

 $\angle \text{CEF} + \angle \text{FEA} + \angle \text{AEB} = 180^{\circ}$ 에서 $\angle \text{FEC} = 50^{\circ}$

 $\Box FDCE$ 에서 $\angle x + 2 \times 90^{\circ} + 50^{\circ} = 360^{\circ}$ $\therefore \angle x = 130^{\circ}$

- 15. 다음 그림과 같은 평행사변형 ABCD 에서 점 $\mathrm{M,N}$ 은 각각 $\overline{\mathrm{BC}},\overline{\mathrm{DC}}$ 의 중점이다. $\overline{\mathrm{PQ}}=5$ 일 때, $\overline{\text{MN}}$ 의 길이를 구하면?





 \overline{AC} 와 \overline{BD} 의 교점을 O 라고 하면 $\overline{AO}=\overline{CO}$ 이다. $\triangle ABC$ 에서 $\overline{AM},\overline{BO}$ 는 중선이므로 점P 는 무게중심이므로 $\overline{\mathrm{PO}} = \frac{1}{3}\overline{\mathrm{BO}}$

점Q 도 \triangle ACD 의 무게중심이므로 $\overline{\mathrm{QO}} = \frac{1}{3}\overline{\mathrm{DO}}$, △BCD 에서 $\overline{BD} = 3\overline{PQ}$, $\overline{BD} = 3 \times 5 = 15$ ∴ $\overline{MN} = \frac{1}{2}\overline{BD} = \frac{15}{2}$