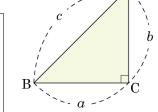

1. 다음 직각삼각형에서 $\sin A - \cos A$ 의 값



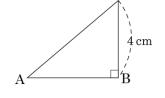
 $\overline{AB} = \sqrt{6^2 + 8^2} = 10$

$$\sin \Lambda = \frac{\overline{BC}}{\overline{BC}} = \frac{8}{8}$$

$$\sin A = \frac{\overline{BC}}{\overline{AB}} = \frac{8}{10} = \frac{4}{5} , \cos A = \frac{\overline{AC}}{\overline{AB}} = \frac{6}{10} = \frac{3}{5}$$

따라서 $\sin A - \cos A = \frac{4}{5} - \frac{3}{5} = \frac{1}{5}$ 이다.

- 2. 다음 그림과 같은 삼각형에서 삼각비가 옳지 <u>않은</u> 것을 골라라.

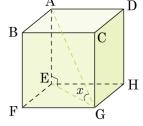


▶ 답:

▶ 답:

▷ 정답: ⑤ ▷ 정답: ②

다음 그림과 같은 직각삼각형 ABC 에서 $\sin A = \frac{2}{3}$ 이고, \overline{BC} 가 4cm 일 때, \overline{AB} 의 길이는?



- $\bigcirc 2\sqrt{5}\,\mathrm{cm}$ $\bigcirc 3 \, \mathrm{cm}$
- $2 4\sqrt{5} \,\mathrm{cm}$
- $3 2\sqrt{7} \,\mathrm{cm}$
- \bigcirc $4\sqrt{3}$ cm

$$\sin A = \frac{\overline{BC}}{\overline{AC}} = \frac{2}{3}$$
 이므로 $4 = \overline{AC} \times \frac{2}{3}$ 이다.
$$\Rightarrow \overline{AC} = 6 \text{cm}$$
 따라서 피타고라스 정리에 의해 $\overline{AB} = \sqrt{6^2 - 4^2} = \sqrt{20} = \sqrt{20}$

 $2\sqrt{5}$ cm 이다.

다음 그림과 같은 한 변의 길이가 1 인 정 4. 육면체에서 $\angle AGE$ 가 x 일 때, $\sin x + \cos x$ 의 값이 $\frac{\sqrt{a} + \sqrt{b}}{c}$ 이다. a + b + c 의 값을 구하시오.(단, a, b, c는 유리수)

답: ▷ 정답: 12

 $\overline{AG} = \sqrt{3}$ $\overline{EG} = \sqrt{2}$ $\overline{AE} = 1 \ \bigcirc \Box \Box \Box$

 $\sin x + \cos x = \frac{1}{\sqrt{3}} + \frac{\sqrt{2}}{\sqrt{3}} = \frac{\sqrt{3} + \sqrt{6}}{3}$

따라서 a+b+c=12 이다.

다음 삼각비의 값 중에서 가장 큰 것은? **5.**

- ① $\sin 0^{\circ}$ ② $\cos 30^{\circ}$ ③ $\cos 45^{\circ}$ $\bigcirc \tan 45^\circ$

① $\sin 0^{\circ} = 0$ ② $\cos 30^{\circ} = \frac{\sqrt{3}}{2}$ ③ $\cos 45^{\circ} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$ ④ $\sin 30^{\circ} = \frac{1}{2}$ ⑤ $\tan 45^{\circ} = 1$ **6.** sin 30° × cos 30° + tan 60° × cos 60° 의 값은?

① $\frac{3\sqrt{3}}{4}$ ② $\frac{3\sqrt{3}}{2}$ ③ $\frac{3\sqrt{2}}{4}$ ④ $\frac{5\sqrt{2}}{8}$ ⑤ $\frac{5\sqrt{3}}{8}$

해설 $\sin 30^{\circ} = \frac{1}{2}, \cos 30^{\circ} = \frac{\sqrt{3}}{2}, \tan 60^{\circ} = \sqrt{3}, \cos 60^{\circ} = \frac{1}{2}$ $\therefore (준식) = \frac{1}{2} \times \frac{\sqrt{3}}{2} + \sqrt{3} \times \frac{1}{2} = \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{4}$

7. 직선 $y = \frac{2}{5}x - 1$ 이 x 축의 양의 방향과 이루는 예각의 크기를 A 라고 할 때, 다음 중 옳은 것은 ?

①
$$\sin A = \frac{1}{\sqrt{5}}$$

② $\cos A = \frac{2}{\sqrt{5}}$
③ $\tan A = 2$
④ $\sin A \cdot \cos A = \frac{2}{5}$

$$\cos A = -\frac{1}{2}$$

$$\odot$$
 tan $A =$

주어진 직선의 기울기는 $\frac{2}{5}$ 이므로 다음 그림과 같이 표현할 수 있다.

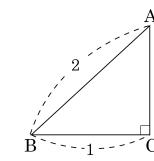
$$\tan A = \frac{2}{5}, \cos A = \frac{5}{\sqrt{29}}, \sin A = \frac{2}{\sqrt{29}}$$

 $\sin 0^\circ \times \tan 0^\circ - \cos 0^\circ$ 의 값을 A , $\sin 90^\circ \times \cos 90^\circ + \tan 0^\circ$ 의 값을 8. B 라 할 때, B – A 의 값은?

① -2 ② -1 ③ 0

⑤ 2

해설


 $A = 0 \times 0 - 1 = -1$, $B = 1 \times 0 + 0 = 0$ 이므로 B - A = 0 - (-1) = 1

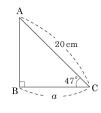
- 9. 다음 중 삼각비의 값의 대소 관계로 옳지 <u>않은</u> 것을 모두 고르면?
- $3\sin 40^{\circ} > \cos 20^{\circ}$

해설 3 0°

- ③ 0° ≤ x < 45° 인 범위에서는, sin x < cos x 이므로 ∴ sin 40° < cos 20°
- ④ $0^{\circ} \le x \le 90^{\circ}$ 인 범위에서는 x 의 값이 증가하면 $\cos x$ 의
- 값은 1 에서 0 까지 감소한다. ∴ cos 10° > cos 80°

10. $\angle C$ 가 직각인 직각삼각형 ABC 에서 $\overline{AB}=2$, $\overline{BC}=1$ 라 할 때, $(\sin B + \cos B)(\sin A - 1)$ 의 값은?

- ① $-\frac{\sqrt{2}}{4}$ ② $-\frac{1+\sqrt{2}}{4}$ ③ $-\frac{1+2\sqrt{3}}{4}$ ③ $-\frac{3\sqrt{3}}{4}$


$$\overline{AC} = \sqrt{2^2 - 1^2} = \sqrt{3}$$

$$(\sin R + \cos R) (\sin A - \sin A)$$

$$(\sin B + \cos B) (\sin A - 1) = \left(\frac{\sqrt{3}}{2} + \frac{1}{2}\right) \left(\frac{1}{2} - 1\right)$$
$$= \left(\frac{\sqrt{3} + 1}{2}\right) \left(-\frac{1}{2}\right)$$
$$= -\frac{1 + \sqrt{3}}{4}$$

$$=-\frac{1+\sqrt{3}}{4}$$

11. 다음 그림의 $\triangle ABC$ 에서 삼각비의 표를 보고 a 의 값을 구하여라.

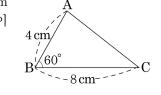
〈삼각비의 표〉

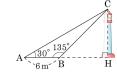
x	sin x	cos x	tan x
43°	0.6820	0.7314	0.9325
44°	0.6947	0.7193	0.9657
45°	0.7071	0.7071	1.0000
46°	0.7193	0.6947	1.0355
47°	0.7314	0.6821	1.0724

▷ 정답: 13.642

답:

 $a = 20 \times \cos 47^\circ = 13.642$


12. 다음 그림과 같은 $\triangle ABC$ 에서 $\overline{AB}=4cm$, $\overline{BC}=8cm$, $\angle B=60^\circ$ 일 때, \overline{AC} 의 길이


② $5\sqrt{3}$ cm

 $4 5\sqrt{2}$ cm

⑤ 7cm

B (60° $\overline{\rm AH} = 4\sin 60^\circ$ $=4\times\frac{\sqrt{3}}{2}=2\sqrt{3}$ $\overline{\mathrm{HC}} = 8 - \overline{\mathrm{BH}}$ $= 8 - 4\cos 60^{\circ}$ = 8 - 2 = 6 $\overline{AC}^2 = \overline{AH}^2 + \overline{HC}^2$ 이므로 $\overline{AC}^2 = (2\sqrt{3})^2 + 6^2 = 12 + 36 = 48$ $\therefore x = 4\sqrt{3} \text{(cm)}$ 13. 다음 그림은 등대의 높이를 알아보기 위해 측정한 결과이다. 등대의 높이는?

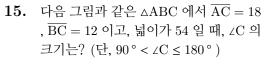
- ① $(3 \sqrt{3})$ m $(4\sqrt{3}+1)$ m
- ② $(3\sqrt{3}-3)$ m ③ $(4\sqrt{3}-1)$ m $(3\sqrt{3}+3)$ m

해설

등대의 높이를 *h* 라 하면 $\angle \text{CBH} = 45^{\circ}$ 이므로 $\overline{\text{BH}} = h$ ∠CAH = 30° 이므로

 $6+h: h=\sqrt{3}:1, \sqrt{3}h=6+h$ $(\sqrt{3}-1)h=6$

 $\therefore h = \frac{6}{\sqrt{3} - 1} = 3(\sqrt{3} + 1) = 3\sqrt{3} + 3(m)$


14. 다음 그림과 같이 \overline{AB} 를 지름으로 하는 원 O 위의 한 점 C 를 지나는 접선과 지름 AB 의 연장선과의 교점을 D 라 <u>√30°</u>O 하고, $\overline{AB} = 8 \, \mathrm{cm}$, $\angle BAC = 30 \, ^{\circ}$ 일 때, ~8 cm-△CBD 의 넓이를 구하여라. $\underline{\mathrm{cm}^2}$

답: ightharpoonup 정답: $4\sqrt{3}$ $ext{cm}^2$

 $\angle BCD = \angle BAC = 30^{\circ}$

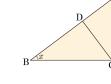
 $\angle ACB = 90$ ° 이므로 $\angle ABC = 60$ ° △CBD 에서 $\angle BDC = \angle CBA - \angle BCD = 60^{\circ} - 30^{\circ} = 30^{\circ}$ $\therefore \ \overline{\mathrm{BD}} = \overline{\mathrm{BC}} = 8\sin 30 \ = 8 \times \frac{1}{2} = 4 \ (\mathrm{cm})$

 \therefore (\triangle CBD의 넓이) = $\frac{1}{2} \times 4 \times 4 \times \sin(180^{\circ} - 120^{\circ})$ = $4\sqrt{3}$ (cm²)

③ 120°

① 95°

② 100°

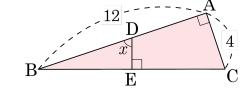

⑤150° ④ 135°

두 변의 길이가 a, b 이고 그 끼인 각 x 가 둔각이면, 삼각형의 넓이 $S = \frac{1}{2}ab\sin(180\degree - x)$

 $\frac{1}{2} \times 12 \times 18 \times \sin(180\,^{\circ} - \angle C) = 54 ,$ $\sin(180\,^{\circ} - \angle C) = \frac{1}{2} = \sin 30\,^{\circ}$

따라서 ∠C = 150°이다.

 ${f 16}$. 다음 그림에서 $\angle {
m C} = 90^{\circ}$, $\overline{
m AB} oldsymbol{oldsymbol{ iny CD}}$ 이고 $\angle {
m B} = x$ 일 때, 다음 중 옳지 <u>않은</u> 것은?

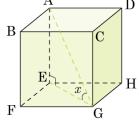


$$\cos x = \frac{1}{2}$$

$$\cos x = \frac{1}{2}$$

①
$$\sin x = \frac{\overline{AC}}{\frac{\overline{AB}}{\overline{AC}}}$$
 ② $\cos x = \frac{\overline{CD}}{\frac{\overline{AC}}{\overline{AC}}}$ ③ $\tan x = \frac{\overline{CD}}{\overline{AD}}$ ④ $\sin x = \frac{\overline{AD}}{\overline{AC}}$ ⑤ $\cos x = \frac{\overline{BD}}{\overline{BC}}$

17. 다음 그림과 같은 $\triangle ABC$ 에서 $\sin x \times \cos x \times \tan x$ 의 값을 구하여라.



▶ 답:

ightharpoonup 정답: $\frac{9}{10}$

△DBE ○ △CBA (AA 닭 ౖ) $\therefore \angle C = x$ $\overline{BC} = \sqrt{12^2 + 4^2} = \sqrt{160} = 4\sqrt{10}$ $\sin x = \frac{\overline{AB}}{\overline{BC}} = \frac{12}{4\sqrt{10}} = \frac{3}{\sqrt{10}}$ $\cos x = \frac{\overline{AC}}{\overline{BC}} = \frac{4}{4\sqrt{10}} = \frac{1}{\sqrt{10}}$ $\tan x = \frac{\overline{AB}}{\overline{AC}} = \frac{12}{4} = 3$ $\therefore \sin x \times \cos x \times \tan x = \frac{9}{10}$

18. 다음 그림은 한 변의 길이가 2a 인 정육면체이다. $\angle AGE = x$ 라고하면, $\cos x$ 의 값이 $\frac{\sqrt{a}}{b}$ 이다. 이때, a+b의 값을 구하시오.(단, a, b는 유리수)

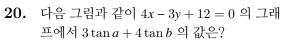
▷ 정답: 9

답:

 $\frac{\overline{\mathrm{EG}}}{\overline{\mathrm{AG}}} = \sqrt{(2a)^2 + (2a)^2} = 2\sqrt{2}a$ $\overline{\mathrm{AG}} = 2\sqrt{3}a$

 $\therefore \cos x = \frac{2\sqrt{2}a}{2\sqrt{3}a} = \frac{\sqrt{2}}{\sqrt{3}} = \frac{\sqrt{6}}{3}$

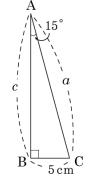
따라서 a+b=9 이다.


19. 다음 그림의 그래프와 평행하고 점 (7,5) 를 지나는 직선의 방정식 은?

- $3 y = \sqrt{3}x + 2$
- $4 \ y = \sqrt{3}x 2$ ⑤ y = 3x + 1

(직선의 기울기)= $\frac{\overline{\rm OB}}{\overline{\rm AO}}=\tan 45^\circ=1$ 이고, 점 (7,5) 를 지나므 로 y = (x - 7) + 5, ∴ 직선의 방정식은 y = x - 2 이다.

② 6 ⑤ 10


$$4x - 3y + 12 = 0$$

 $y = 0$ 일 때, A(-3, 0)
 $x = 0$ 일 때, B(0, 4)

$$x = 0$$
 일 때, B(0, 4)

$$\therefore \tan a = \frac{4}{3}, \tan b = \frac{3}{4}$$
이므로

$$3\tan a + 4\tan b = 3 \times \frac{4}{3} + 4 \times \frac{3}{4} = 4 + 3 = 7$$
이다.

21. 다음 그림에서 13a + 13c 를 구 하여라.

각도	sin	cos
74°	0.96	0.28
75°	0.96	0.26
76°	0.97	0.24

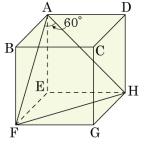
ightharpoonup 정답: 13a + 13c = 490

답:

고
$$C = 75^{\circ}$$
 이므로 $\cos 75^{\circ} = \frac{5}{a} = 0.26$, $\sin 75^{\circ} = \frac{c}{a} = 0.96$ 이므로 $a = \frac{500}{26} = \frac{250}{13}$, $c = \frac{250}{13} \times \frac{96}{100} = \frac{240}{13}$ 이 성립한다. 따라서 $13a + 13c = 250 + 240 = 490$ 이다.

26 13 13 100 13
따라서
$$13a + 13c = 250 + 240 = 490$$
 이다.

22. 다음 그림에서 x 의 값을 구하여라. (단, $\sin 44^\circ = 0.6974$, $\cos 44^\circ = 0.7193$, $\tan 44^\circ = 0.9653$)



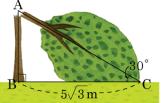
답:▷ 정답: 13.5142

 $\tan 44^\circ = \frac{x}{14}$

 $\therefore x = 14 \tan 44^\circ = 14 \times 0.9653 = 13.5142$

23. 다음은 정육면체에서 $\angle HAF = 60\,^{\circ}$ 이고, $\triangle AFH$ 의 넓이가 $8\sqrt{3}\,\mathrm{cm}^2$ 일 때, 정육면 체의 한 변의 길이를 구하여라.

▷ 정답: 4<u>cm</u>


▶ 답:

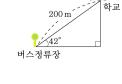
 $\angle {
m HAF} = 60\,^{\circ}$ 이고, $\overline{
m AF} = \overline{
m AH}$ 이므로 $\triangle {
m AFH}$ 는 정삼각형이다.

따라서 $8\sqrt{3} = \frac{\sqrt{3}}{4} \times \overline{FH}^2$ 이므로 $\overline{FH} = 4\sqrt{2}$ cm $= \overline{AF} = \overline{AH}$ \Box EFGH 에서 \angle HFG = 45° 이므로 $\overline{FG} = \overline{FH} \times \sin 45$ ° = 4 cm 이다.

 $\underline{\mathrm{cm}}$

24. 지면으로 수직으로 서 있던 나무가 다음과 같이 부러졌다. 이 때, 부 러지기 전의 나무의 높이를 구하여

정답: 15 m


답:

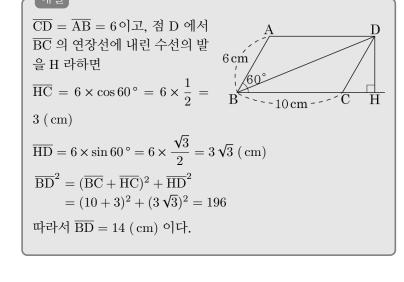
 $\overline{AB} = 5\sqrt{3}\tan 30^{\circ} = 5\sqrt{3} \times \frac{\sqrt{3}}{3} = 5 (m)$ 이다. $\overline{AC} = \frac{5\sqrt{3}}{\cos 30^{\circ}} = 5\sqrt{3} \times \frac{2\sqrt{3}}{3} = 10(m)$ 이다.

$$\cos 30^{\circ}$$
 3 까라서 부러지기 전의 나무의 높이는 $\overline{AB}+\overline{AC}=5+10=15(\mathrm{m})$

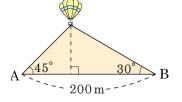
 $\underline{\mathbf{m}}$

25. 영아의 학교는 버스정류장에서 $200 \mathrm{m}$ 떨어져 있고 버스정류장과 학교가 이루는 각도는 $42 \mathrm{^o}$ 이다. 학교는 지면에서 몇 m 높이에 있는지 구하여라. (단, $\sin 48 \mathrm{^o} = 0.7431$, $\cos 48 \mathrm{^o} = 0.6691$)

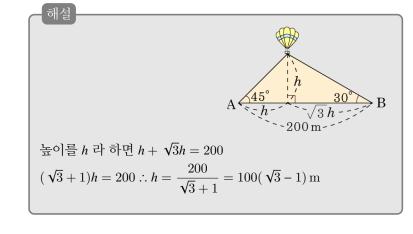
 $\underline{\mathbf{m}}$

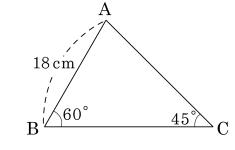

답:▷ 정답: 133.82 m

 $x = 200 \cos 48^{\circ} = 200 \times 0.6691 = 133.82 \text{(m)}$


26. 다음 그림의 평행사변형 ABCD에서 A D A D A BE = 6 cm, BC = 10 cm, ∠ABC = 60°일 때, 대각선 BD의 길이를 구하 여라.

<u>cm</u>


▷ 정답: 14cm



27. 다음 그림과 같이 200 m 떨어져 있는 지면 위의 두 지점 A, B 에서 기구를 올려다 본 각의 크기가 각각 45°, 30°이었다. 지면으로부터 기구까지의 높이는?

- ① $100(\sqrt{3} 1) \text{ m}$ ③ $100\sqrt{3} \text{ m}$
- ② 100 √2 m④ 200 m
- $5 \ 100(\sqrt{3}+1) \,\mathrm{m}$

①
$$\frac{81\sqrt{2} + 240}{2}$$
 ② $\frac{81\sqrt{2} + 243}{2}$ ③ $\frac{81\sqrt{3} + 240}{2}$ ③ $\frac{81\sqrt{3} + 240}{2}$

(2)
$$\frac{1}{81\sqrt{6}+24}$$

$$49 \frac{81\sqrt{3} + 2}{2}$$

$$\circ$$
 $\frac{81 \sqrt{6} + 2}{2}$

$$\cos 60^{\circ} = \frac{\overline{BH}}{18}, \quad \overline{BH} = 18\cos 60^{\circ} = 18 \times \frac{1}{2} = 9 \text{ (cm)}$$

$$\sin 60^{\circ} = \frac{\overline{AH}}{18}, \quad \overline{AH} = 18\sin 60^{\circ} = 18 \times \frac{\sqrt{3}}{2} = 9\sqrt{3} \text{ (cm)}$$

$$\overline{CH} = \overline{AH} \text{ 이므로 } \overline{BC} = 9 + 9\sqrt{3} \text{ (cm)}$$

$$\triangle ABC \text{의 넓이는}$$

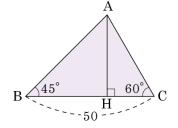
$$(9 + 9\sqrt{3}) \times 9\sqrt{3} \times \frac{1}{2} = \frac{81\sqrt{3} + 243}{2} \text{ (cm}^{2})$$

$$A$$

$$B$$

$$A$$

$$B$$


$$A$$

$$B$$

$$A$$

$$C$$

29. 다음 그림과 같이 $\triangle ABC$ 에서 $\angle B=$ $45\,^{\circ}$, $\angle C = 60\,^{\circ}$, $\overline{BC} = 50$ 일 때, △ABC 의 넓이는?(단, 제곱근표에서 $\sqrt{3} = 1.7$ 이다.)

① 600

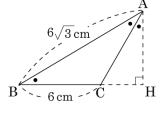
2812.5


③ 1000

4 1200

⑤ 1600

다음 그림에서 $\overline{\mathrm{BH}}=\overline{\mathrm{AH}}=h$ 이 므로 $\tan 60$ ° = $\frac{h}{50-h}$ = $\sqrt{3}$ $h = \sqrt{3}(50 - h)$ 을 정리하면 $(1 + \sqrt{3})h = 50\sqrt{3}$ $(1 + \sqrt{3})h = 50\sqrt{3}$ $\therefore h = \frac{50\sqrt{3}}{1 + \sqrt{3}} = 25\sqrt{3}(\sqrt{3} - \sqrt{3})$ 1) = 75 - 25 √3 = 32.5 따라서 △ABC 의 넓이는 50 × $32.5 \times \frac{1}{2} = 812.5$ 이다.


30. 다음 두 삼각형의 넓이로 바르게 짝지어진 것은?.

- ① $(1)34\sqrt{2}, (2)26\sqrt{3}$ ② $(1)35\sqrt{2}, (2)26\sqrt{3}$ ③ $(1)36\sqrt{2}, (2)25\sqrt{3}$ ④ $(1)36\sqrt{2}, (2)24\sqrt{3}$ $3(1)36\sqrt{2}, (2)25\sqrt{3}$
- ⑤ $(1)37\sqrt{2}, (2)26\sqrt{3}$

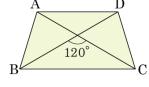
- (1) $\frac{1}{2} \times 12 \times 12 \times \sin(180^{\circ} 135^{\circ})$ $= \frac{1}{2} \times 12 \times 12 \times \sin 45^{\circ}$ $= \frac{1}{2} \times 12 \times 12 \times \frac{\sqrt{2}}{2}$ $= 36\sqrt{2}$
- (2) $\frac{1}{2} \times 10 \times 10 \times \sin 60^{\circ}$ $= \frac{1}{2} \times 10 \times 10 \times \frac{\sqrt{3}}{2}$ $= 25\sqrt{3}$

31. 다음 그림과 같은 삼각형의 넓이를 구하여라.

답:▷ 정답: 9√3

 $\angle ABC = 30^{\circ}$ 이므로 $(\triangle ABC = \frac{1}{2} \times 6\sqrt{3} \times 6 \times \sin 30^{\circ}$ $= \frac{1}{2} \times 6\sqrt{3} \times 6 \times \frac{1}{2}$ $= 9\sqrt{3}$

 ${f 32}$. 다음 그림과 같은 평행사변형 ABCD 에서 ${f AB}=5{
m cm},~{\it L}{
m D}=60^{\circ}$ 이고 $\overline{AE}=\overline{EF}=\overline{FB}$ 인 관계가 성립하고 ΔEFC 의 넓이가 $10 cm^2$ 일 때, $\overline{\mathrm{AD}}$ 의 길이를 구하여라.

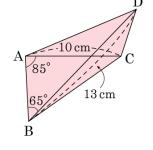

 $\underline{\mathrm{cm}}$

ightharpoonup 정답: $8\sqrt{3}$ $\underline{\mathrm{cm}}$

▶ 답:

 $\triangle \mathrm{EFC} = 10 \, \left(\mathrm{cm^2}\right)$ 이므로 $\triangle \mathrm{ABC} = 30 \, \left(\mathrm{cm^2}\right)$ $\square \mathrm{ABCD} = 60 \, \left(\mathrm{cm^2}\right)$ 이므로 $5 \times x \times \sin 60^{\circ} = 60$ $5 \times x \times \frac{\sqrt{3}}{2} = 60$ $\therefore x = 60 \times \frac{2}{5\sqrt{3}} = \frac{24}{\sqrt{3}} = 8\sqrt{3} \text{ (cm)}$

33. 다음 그림과 같은 등변사다리꼴 ABCD 에서 두 대각선이 이루는 각의 크기가 $120\,^\circ$ 이고, 넓이가 $9\,\sqrt{3}$ 일 때, 대각선의 길이를 구하여라.

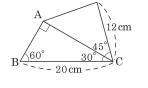

답: ▷ 정답: 6

$$\overline{AC} = \overline{BD} = x$$
라 하면 $\frac{1}{2}x^2 \sin 60^\circ = 9\sqrt{3}$, $\frac{\sqrt{3}}{4}x^2 = 9\sqrt{3}$, $x^2 = 9\sqrt{3} \times \frac{4}{\sqrt{3}} = 36$, $x = 6$

$$\therefore \overline{AC} = \overline{BD} = 6$$

 ${f 34.}$ 다음 그림과 같이 대각선의 길이가 $\overline{
m AC}=$ $10\,\mathrm{cm}$, $\overline{\mathrm{BD}}=13\,\mathrm{cm}$ 인 사각형 ABCD의 넓이를 구하여 빈 칸을 채워 넣어라.

사각형 ABCD의 넓이 = () cm²



ightharpoonup 정답: $rac{65}{2}$

답:

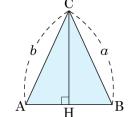
 $S = \frac{1}{2} \times 10 \times 13 \times \sin 30^{\circ}$ $= \frac{1}{2} \times 10 \times 13 \times \frac{1}{2} = \frac{65}{2} (\text{cm}^2)$

35. 다음 그림과 같은 □ABCD 의 넓이를 구하 여라.

ightharpoonup 정답: $50\sqrt{3} + 30\sqrt{6} \, \mathrm{cm}^2$

답:

 $\sin 60^{\circ} = \frac{\overline{AC}}{\overline{BC}} = \frac{\overline{AC}}{20}, \quad \frac{\overline{AC}}{20} = \frac{\sqrt{3}}{2}$ $\therefore \overline{AC} = 10\sqrt{3} \, (cm)$ $(\Box ABCD$ 의 넓이)= $\triangle ABC + \triangle ACD$

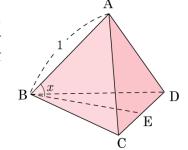

 $= \frac{1}{2} \times 20 \times 10 \sqrt{3} \times \sin 30^{\circ} + \frac{1}{2} \times 10 \sqrt{3} \times 12 \times \sin 45^{\circ}$ $= \frac{1}{2} \times 20 \times 10 \sqrt{3} \times \frac{1}{2} + \frac{1}{2} \times 10 \sqrt{3} \times 12 \times \frac{\sqrt{2}}{2}$

 $\underline{\rm cm^2}$

36. 다음 그림의 $\triangle ABC$ 에서 $\overline{AC}=b$, $\overline{BC}=a$, $\overline{CH}\bot\overline{AB}$ 일 때, $\frac{\sin A}{\sin B}$ 의 값은?

- ① a^2b^2 ② a+b ③ ab

 $\sin A = \frac{\overline{CH}}{b}, \quad \sin B = \frac{\overline{CH}}{a}$ 따라서 $\frac{\sin A}{\sin B} = \frac{a}{b}$ 이다.


37. $\tan A = 3$ 일 때, $\frac{\sin A \cos A + \sin A}{\cos^2 A + \cos A}$ 의 값을 구하면?

① $\frac{1}{\sqrt{3}}$ ② $\frac{1}{3}$ ③ 1 ④ 3 ⑤ $\sqrt{3}$

an A = 3 이면 $\dfrac{\sin A}{\cos A} = 3$ 이다. 따라서 $\sin A = 3\cos A$ 이다. 따라서

 $\frac{\sin A \cos A + \sin A}{\cos^2 A + \cos A} = \frac{3\cos^2 A + 3\cos A}{\cos^2 A + \cos A} = 3 \text{ ord.}$

38. 다음 그림과 같이 밑변이 ΔBCD 이 고, 한 모서리의 길이가 1 인 정사면 체 A – BCD 가 있다. $\overline{\text{CD}}$ 의 중점을 E, $\angle ABE = x$ 라 할 때, $\cos x$ 의 값 을 구하면?

- ① $\frac{\sqrt{2}}{2}$ ② $\frac{\sqrt{3}}{3}$ ③ $\sqrt{2}$ ④ $\sqrt{3}$ ⑤ $\frac{\sqrt{6}}{3}$

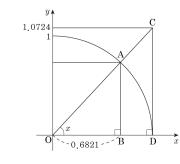
ΔBCD 는 정삼각형이므로

$$\overline{BE} = \frac{\sqrt{3}}{2} \circ | \mathcal{I},$$

점 A 에서 $\overline{\mathrm{BE}}$ 로 내린 수선의 발을 점 H 라고 하면, 삼각형 BCD 의 무게중심이므로

$$\overline{BH} = \frac{2}{3} \times \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{3}$$

따라서
$$\cos x = \frac{\sqrt{3}}{3} = \frac{\sqrt{3}}{3}$$
 이다.


- 39. 다음 그림과 같이 \overline{AB} 를 지름으로 하 는 반원 O 위의 점 C 에서 \overline{AB} 에 내린 수선의 발을 D 라고 하고, $\angle DCB = \theta$, $\overline{AD} = \frac{16}{3}$, $\overline{BD} = 3$ 일 때, $\cos \theta$ 의 값은?

 - - $\overline{AC}=x$ 라 하면, $\triangle ABC$ 와 $\triangle ACD$ 는 닮음이다. $x:\frac{16}{3}=\frac{25}{3}:x$ $\therefore x=\frac{20}{3}$

$$x: \frac{20}{3} = \frac{20}{3}:$$
$$\therefore x = \frac{20}{3}$$

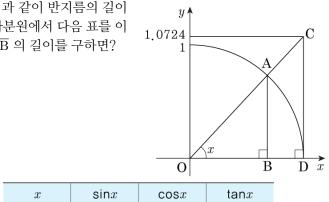
$$\angle DCB = \angle CAB$$
 이므로 $\cos \theta = \frac{\frac{20}{3}}{\frac{25}{3}} = \frac{4}{5}$ 이다.

40. 다음 그림과 같이 반지름의 길이가 1 인 사분원에서 다음 표를 이용하 여 BD 의 길이는?

- **4**0.3179 **5** 0.6821

해설

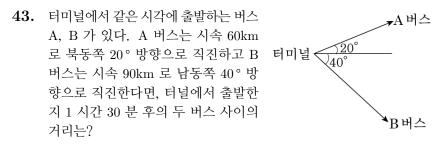
 $\overline{BD} = \overline{OD} - \overline{OB}$ $\overline{AO} = 1, \cos x = \frac{\overline{BO}}{\overline{AO}} = \frac{\overline{BO}}{1} = 0.6821$ $\therefore \overline{BD} = 1 - \cos x = 1 - 0.6821 = 0.3179$

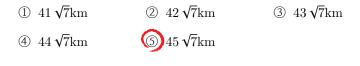

- **41.** x 에 관한 이차방정식 $ax^2 2x + 8 = 0$ 의 한 근이 $2\sin 90^\circ 3\cos 0^\circ$ 일 때, a 의 값을 구하면?
 - ① -10 ② -6 ③ -2 ④ 2 ⑤ 6

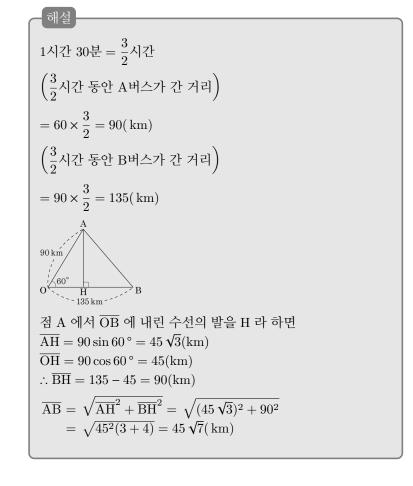
이차방정식 $ax^2-2x+8=0$ 에 x=-1 을 대입하면, $a\times (-1)^2-2\times (-1)+8=0$

a+2+8=0, a=-10

42. 다음 그림과 같이 반지름의 길이 가 1 인 사분원에서 다음 표를 이


용하여 $\overline{\mathrm{OB}}$ 의 길이를 구하면?



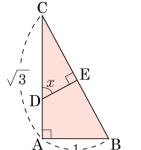

	011100	000	· Carrio
43°	0.6820	0.7314	0.9325
44°	0.6947	0.7193	0.9657
45°	0.7071	0.7071	1.0000
46°	0.7193	0.6947	1.0355
47°	0.7314	0.6821	1.0724

① 0.6821 ② 0.6947 ③ 0.7193 **④** 0.7314 **⑤** 0.9325

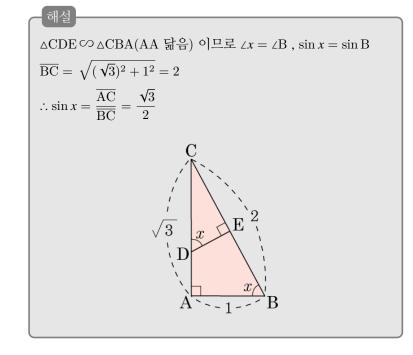
1) $\tan x = \frac{\overline{CD}}{\overline{OD}} = \frac{\overline{CD}}{1} = 1.0724$ $\therefore x = 47^{\circ}$ 2) $\cos x = \frac{\overline{OB}}{\overline{AO}} = \frac{\overline{OB}}{1} = \cos 47^{\circ} = 0.6821$

44. 다음 그림과 같이 평행사변형 ABCD 의 두 변 BC,CD 의 중점을 각각 ~11 M,N 이라 하고 $\overline{AM},\ \overline{AN}$ 과 대각 선 BD 와의 교점을 E,F 라 하자. $\overline{\rm AE}=8$, $\overline{\rm AF}=11$, $\rm \angle EAF=30\,^{\circ}$ 일 때, □EMNF 의 넓이를 구하여 라.

답:


ightharpoonup 정답: $rac{55}{2}$

해설


점 E 와 F 는 \triangle ABC 와 \triangle ACD 의 무게중심이므로 $\overline{AM} = 8 \times \frac{3}{2} = 12$ $\overline{AN} = 11 \times \frac{3}{2} = \frac{33}{2}$

 $\Box \text{EMNF} = \triangle \text{AMN} - \triangle \text{AEF}$ $= \frac{1}{2} \times 12 \times \frac{33}{2} \times \sin 30^{\circ}$ $- \frac{1}{2} \times 8 \times 11 \times \sin 30^{\circ}$

45. 다음 그림에서 $\sin x$ 의 값은?

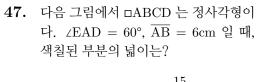
- ① $\sqrt{2}$ ② $\frac{\sqrt{2}}{2}$ ③ $\frac{\sqrt{3}}{2}$ ④ $\sqrt{3}$ ⑤ $\frac{\sqrt{3}}{3}$

46. 다음 그림과 같이 지면으로부터 15m 높이에 있는 기구를 두 지점 A, B 에서 올려다 본 각도가 각각 55° , 50° 일 때, 다음 삼각비 표를 이용하여 두 지점 A, B 사이의 거리를 구하여 빈 칸에 알맞은 수를 써넣어라.(단, 결과값은 소수 둘째 자리에서 반올림한다.)

A H B							
각도	sin	cos	tan				
35	0.5736	0.8192	0.7002				
40	0.6428	0.7660	0.8391				

 $\underline{\mathbf{m}}$

▷ 정답: 23.1m


 $\overline{\mathrm{AH}} = 15 \times \tan 35^{\circ} = 10.503 (\,\mathrm{m})$

해설

▶ 답:

 $\overline{BH} = 15 \times \tan 40^{\circ} = 12.5865 (\mathrm{m})$ 따라서 \overline{AH} + \overline{BH} = 10.503 + 12.5865 = 23.0895 = 23.1(m)

이다.

- ① 7 (cm^2) ② $\frac{15}{2} \text{ (cm}^2$) ③ 10 (cm^2) ④ $\frac{25}{2} \text{ (cm}^2$) 6 cm ③ $\frac{27}{2} \text{ (cm}^2$)

E

 \mathbf{D}

 $\overline{\mathrm{ED}} = \overline{\mathrm{AD}} \sin 60^{\circ} = 6 \times \frac{\sqrt{3}}{2} = 3\sqrt{3} \, \mathrm{(cm)}$ 따라서 $\Delta \mathrm{DEC}$ 의 넓이는 $\frac{1}{2} \times \overline{\mathrm{ED}} \times \overline{\mathrm{CD}} \times \sin \left(180^{\circ} - (30^{\circ} + 90^{\circ})\right)$

 $=\frac{1}{2} \times 3\sqrt{3} \times 6 \times \frac{\sqrt{3}}{2} = \frac{27}{2} \left(\mathrm{cm}^2\right)$ 이다.