1. 다음 보기의 함수 중에서 일대일 대응인 것은 <u>모두</u> 몇 개인가? 보기

 $f(x) = -x^2 + 1$

- 8(n) n 1

① 1개 ② 2개

해설

③3개 ④4개 ⑤5개

일대일 대응이란 정의역이 *x* 에 치역 *y* 가 하나씩 대응 될 때를 말한다.

- ①, ② 일대일 대응이 아니다. ② 함수가 아니다.
- □ 암주가 아니다. □ 따라서 일대일 대응인 것은 □, □, □ 3개이다.
- 1112 112 113 113

 ■ 답:

 □ 정답:
 2

V 0_-

i) $x \ge 1 : y = (f \circ f)(x) = f(f(x)) = f(2) = 2$ ii) $x < 1 : y = (f \circ f)(x) = f(f(x)) = f(1) = 2$ $\therefore y = (f \circ f)(x) = 2$ **3.** 실수 전체의 집합에서 정의된 함수 f(x) = 2x - 3에 대하여 f(f(f(x))) = x가 되는 x의 값을 구하여라.

▶ 답:

▷ 정답: 3

해설

함수 f(x) = 2x - 3에 대하여 f(f(x)) = 2f(x) - 3 = 2(2x - 3) - 3 = 4x - 9

f(f(f(x))) = f(4x - 9) = 2(4x - 9) - 3 = 8x - 21 $f(f(f(x))) = x \circ \square \exists 8x - 21 = x$ ∴ x = 3

4. 함수 $f(x) = x^3 + x^2 + x - 5$ 일 때, $(f \circ f)(x)$ 를 x - 1 로 나눈 나머지를 구하여라.

▶ 답:

➢ 정답: -11

 $(f \circ f)(x) = (x^3 + x^2 + x - 5)^3$ $+ (x^3 + x^2 + x - 5)^2 + (x^3 + x^2 + x - 5) - 5$

 $(f\circ f)(x)$ 를 x-1 로 나눈 나머지는 나머지 정리에 의하여 위의 식에 x=1을 대입한 것과 같다. f(1)=-2이므로

 $f(f(1)) = (-2)^3 + (-2)^2 + (-2) - 5 = -11$

- f(x)=x+1 , g(x)=3x-2 일 때, $(g\circ h)(x)=f(x)$ 를 만족시키는 **5.** 함수 h(x) 를 구하면?
 - ① $h(x) = \frac{1}{3}x + 1$ ② $h(x) = \frac{2}{3}x + \frac{1}{3}$ ③ $h(x) = x + \frac{1}{3}$ ③ $h(x) = \frac{2}{3}x + 1$ ② $h(x) = \frac{2}{3}x + \frac{2}{3}$

- f(x) = x + 1 , g(x) = 3x 2 일 때, $\left(g\circ h\right)\left(x\right)=f\left(x\right)$ 를 만족해야 하므로
- $(g \circ h)(x) = g(h(x)) = 3h(x) 2$ 3h(x) - 2 = x + 1, 3h(x) = x + 3
- $\therefore h(x) = \frac{1}{3}x + 1$

다음에서 $f=f^{-1}$ 를 만족시키는 함수를 모두 고른 것은? **6.**

> $f(x) = -\frac{2}{x}$ f(x) = x - 1

④ □, □

1 🦳

2 L

③つ, ©

⑤ ⑦, ₾, €

 $(f \circ f)(x) = x$ 인지 확인한다.

해설

 $\bigcirc (f \circ f)(x) = \frac{9}{4}x$

© $(f \circ f)(x) = x$ ② $(f \circ f)(x) = x - 2$ 따라서 $f = f^{-1}$ 를 만족시키는 함수는 ①, ©이다.

7. $\it R$ 가 실수 전체의 집합일 때, $\it R$ 에서 $\it R$ 로의 함수 $\it f$ 를 다음과 같이 정의한다.

 $f: x \to a \mid x-1 \mid +(2-a)x + a \ (x \in R, \ a \in R)$ 함 수 f 가 일대일 대응이 되도록 하는 a 의 값의 범위는?

(4) a < 1 (5) $a \le 1$

① a < -1 ② $a \le -1$ ③ a > -1

해설

f(x) = a|x-1| + (2-a)x + a 에서 $x \ge 1$, x < 1 인 경우로 나누면, $x \ge 1 \stackrel{\text{def}}{=} \text{III}, f(x) = a(x-1) + (2-a)x + a$ $x < 1 \stackrel{\text{def}}{=} \text{III}, f(x) = a(1-x) + (2-a)x + a$ $f(x) = \begin{cases} 2x & (x \ge 1) \\ -2(a-1)x + 2a & (x < 1) \end{cases}$

함수 f(x) 가 R 에서 R 로의 일대일 대응이려면 $x \ge 1$ 에서 기울기가 양이므로 x < 1 에서도 기울기가 양이어야

한다. $\stackrel{\text{Z}}{\neg}$, -2(a-1) > 0, a-1 < 0 $\therefore a < 1$

8. 퀴즈대회에 나간 호준이는 다음에 주어진 마지막 문제를 맞히면 우승이다. 호준이가 우승할 수 있는 답을 고르면?

집합 $A = \{a, b, c\}$ 일 때, A에서 A로의 함수 $f: A \to A$ 에 대하여, 함수의 개수는 m개, 일대일 대응 함수의 개수는 n개, 상수 함수는 s개, 항등함수는 r개이다. m+n+s+r의 값을 구하여라.

① 21 ② 27 ③ 33 ④ 37 ⑤ 43

(4) 3

함수의 개수는 3³ = 27(가지) ∴ m = 27

일대일 대응의 개수는 $3 \times 2 \times 1 = 6$ (가지) $\therefore n = 6$ 상수함수의 개수는 치역이 a,b,c인 경우의 3가지 $\therefore s = 3$ 항등함수의 개수는 1가지 $\therefore r = 1$ 따라서 m + n + s + r = 27 + 6 + 3 + 1 = 37

- 집합 $X=\{1,\ 2,\ 3,\ 4\}$ 일 때, 함수 $f:X\to X$ 가 X 의 임의의 원소 x9. 에 대하여 $f(x) \le x$ 를 만족한다. 이 때, 함수 f 의 개수는?
 - ① 16개 ② 20개 ④ 28개 ⑤ 32개

해설 f(1) 의 값이 될 수 있는 것은

③ 24 개

1의 1 개 $\Leftarrow f(1) \leq 1$

f(2) 의 값이 될 수 있는 것은

1, 2의 2개 $\Leftarrow f(2) \leq 2$ f(3) 의 값이 될 수 있는 것은

1, 2, 3 의 3개 $\Leftarrow f(3) \le 3$

f(4) 의 값이 될 수 있는 것은

1, 2, 3, 4 $\stackrel{\circ}{-}$ 4 $\stackrel{\circ}{-}$ \Leftarrow $f(4) <math>\leq$ 4 따라서, 구하는 함수 f 의 개수는

 $1 \cdot 2 \cdot 3 \cdot 4 = 24 \, (7 \text{H})$

10. 실수 전체의 집합에서 정의된 함수 f, g가 $f(x) = ax + b, g(x) = 2x^2 + 3x + 1$ 이고, 모든 실수 x에 대하여 $(f \circ g)(x) = (g \circ f)(x)$ 를 만족할 때, $f(1) + f(2) + f(3) + \cdots + f(10)$ 의 값은?(단, $a \neq 0$)

① 60 ② 55 ③ 51 ④ 48 ⑤ 45

해설 $(f \circ g)(x) = f(g(x)) = a(2x^2 + 3x + 1) + b$ $= 2ax^2 + 3ax + a + b \cdots \oplus 0$ $(g \circ f)(x) = g(f(x)) = 2(ax + b)^2 + 3(ax + b) + 1$ $= 2a^2x^2 + (4ab + 3a)x + 2b^2 + 3b + 1 \cdots \oplus 0$ 모든 실수 x 에 대하여 ① = ©이므로 $2a = 2a^2, \ 3a = 4ab + 3a, \ a + b = 2b^2 + 3b + 1$ 위의 식을 연립하여 풀면 $a = 1, \ b = 0(\because a \neq 0)$ 즉, f(x) = x이므로 $f(1) + f(2) + f(3) + \cdots + f(10)$ $= 1 + 2 + 3 + \cdots + 10 = 55$

11. $f\left(\frac{2x-1}{3}\right)=4-2x$ 일 때, $(f\circ f)(2)$ 의 값을 구하여라.

▶ 답:

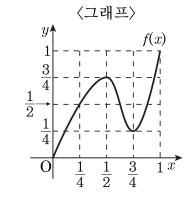
▷ 정답: 12

해설 $\frac{2x-1}{3} = t 로 놓으면$ $2x-1 = 3t 이므로 x = \frac{3t+1}{2}$ $f(t) = 4 - 2 \cdot \frac{3t+1}{2} = -3t+3$ $\therefore (f \circ f)(2) = f(f(2)) = f(-3) = 12$

$$f(t) = 4 - 2 \cdot \frac{1}{2} = -3t + 3$$

$$\therefore (f \circ f)(2) = f(f(2)) = f(-3)$$

12. $R = \{x | 0 \le x \le 1\}$ 이라 할 때, R에서 R로의 함수 y = f(x)의 그래프가 다음 그림과 같다.(단, $f^n(x) = (f \circ f \circ ... \circ f)(x)$: f 개수 n개)



- 이 때, $f\left(\frac{1}{4}\right)+f^2\left(\frac{1}{4}\right)+f^3\left(\frac{1}{4}\right)+\cdots+f^{99}\left(\frac{1}{4}\right)$ 의 값을 구하면?
- (단, $f\left(\frac{1}{4}\right) = \frac{1}{2}$, $f\left(\frac{1}{2}\right) = \frac{3}{4}$, $f\left(\frac{3}{4}\right) = \frac{1}{4}$)
- $\bigcirc \bigcirc \frac{99}{2} \qquad \bigcirc \bigcirc \frac{95}{2} \qquad \bigcirc \bigcirc \frac{93}{2} \qquad \bigcirc \bigcirc \bigcirc \frac{89}{2}$

그래프에서 $f\left(\frac{1}{4}\right)=\frac{1}{2},\;f^2\left(\frac{1}{4}\right)=f\left(\frac{1}{2}\right)=\frac{3}{4},\;f^3\left(\frac{1}{4}\right)=$

 $f^{3k+1}\left(\frac{1}{4}\right) = \frac{1}{2}, \quad f^{3k+2}\left(\frac{1}{4}\right) = \frac{3}{4}, \quad f^{3k+3}\left(\frac{1}{4}\right) = \frac{1}{4} \quad (k = 1)$

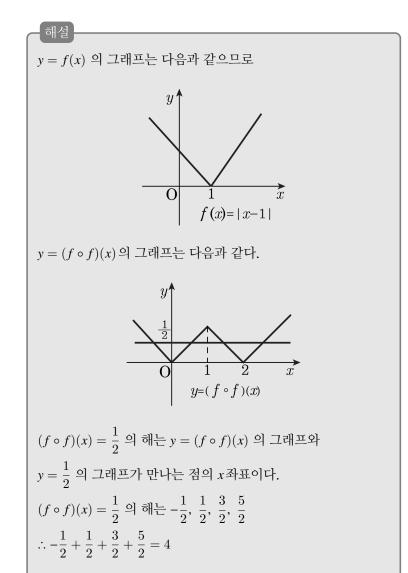
 $f\left(\frac{3}{4}\right) = \frac{1}{4}, \ \cdots$ 이므로

- $\therefore f\left(\frac{1}{4}\right) + f^2\left(\frac{1}{4}\right) + f^3\left(\frac{1}{4}\right) + \cdots + f^{99}\left(\frac{1}{4}\right) = 33 \times$
- $\left(\frac{1}{2} + \frac{3}{4} + \frac{1}{4}\right) = \frac{99}{2}$

13. 함수 f(x)=|x-1| 에 대하여 방정식 $(f\circ f)(x)=\frac{1}{2}$ 를 만족하는 모든 x의 합을 구하면?

① 0

② 1 ③ 2 ④ 3



14. $X = \{x \mid x \ge k\}$ 를 정의역으로 하는 함수 $f(x) = |x^2 - 1|$ 의 역함수가 존재할 때, 실수 k의 최솟값을 구하여라.

▶ 답:

▷ 정답: 1

 $x^2 - 1 \ge 0$ 이면 $x \le -1$, $x \ge 1$, $x^2 - 1 < 0$ 이면 -1 < x < 1 따라서, $f(x) = |x^2 - 1| = \begin{cases} x^2 - 1(x \le -1, x \ge 1) \\ 1 - x^2(-1 < x < 1) \end{cases}$ y = f(x) 의 그래프는 다음 그림과 같으므로 함수 f(x) 가 일대일대응이 되는 정의역은 $\{x \mid x \ge 1\}$ 또는 $\{x \mid x \le -1\}$ 또는 $\{x \mid -1 \le x \le 0\}$ 또는 $\{x \mid 0 \le x \le 1\}$ 즉, $X = \{x \mid x \ge k\}$ 를 정의역으로 하려면 k 의 최솟값은 1이다.

15. 함수 f(x) = 4x - 1의 역함수를 g(x)라 할 때, 함수 f(3x)의 역함수를 g(x)로 나타내면 무엇인가?

①
$$g\left(\frac{x}{3}\right)$$
 ② $3g(x)$ ③ $g(3x)$ ④ $\frac{1}{3}g(3x)$

$$f(x) = 4x - 1 에서 f(x) 를 y로 놓고$$

$$y = 4x - 1 을 x 에 관하여 정리하면$$

$$x = \frac{1}{4}y + \frac{1}{4}$$
이 때, x 와 y 를 바꾸면
$$f^{-1}(x) = g(x) = \frac{1}{4}x + \frac{1}{4}$$
또, $f(3x) = 12x - 1$ 에서 $f(3x) = y$ 로 놓고 $y = 12x - 1$ 을 x 에 관하여 정리하면
$$x = \frac{1}{12}y + \frac{1}{12}$$

$$\therefore f^{-1}(3x) = \frac{1}{12}x + \frac{1}{12} = \frac{1}{3}\left(\frac{1}{4}x + \frac{1}{4}\right) = \frac{1}{3}g(x)$$

16. 두 함수 $f(x)=3x-1,\ g(x)=-x+2$ 에 대하여 $(f\circ (g\circ f)^{-1}\circ f)(1)$ 의 값은?

- ① -4 ② -2 ③ $-\frac{4}{3}$ ④ 0 ⑤ 1

 $g^{-1}(x) = -x + 2$

해설

$$g^{-1}(f(x)) = g^{-1}(3x - 1) = -(3x - 1) + 2$$
$$= -3x + 3$$

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$
이므로

$$(f \circ (g \circ f)^{-1} \circ f)(1) = (f \circ f^{-1} \circ g^{-1} \circ f)(1)$$

$$= (g^{-1} \circ f)(1)$$

$$= (g^{-1} \circ f)(1)$$

$$= (g^{-1} \circ f)(1)$$

= $g^{-1}(f(1)) = 0$

- 17. 양의 실수의 집합을 R^* 라 할 때 R^* 에서 R^* 로의 함수 f, g 가 $f(x) = x^2 + x, \ f(x)g(x) = x + 2$ 를 만족할 때 $(g \circ f^{-1})(2)$ 의 값은 ?
 - ① 2 ② 1 ③ $\frac{1}{2}$ ④ $\frac{3}{2}$ ⑤ $\frac{3}{4}$

 $f^{-1}(2)=c$ 라 하면 $f(c)=2
ightarrow c^2+c=2$ $c^2 + c - 2 = 0 \Leftrightarrow (c - 1)(c + 2) = 0$

c > 0 이므로 c = 1

 $f^{-1}(2) = 1$ f(x)g(x) = x + 2 에 x = 1 을 대입하면

f(1)g(1) = 3 $(1^2 + 1)g(1) = 3$

해설

 $g(1) = \frac{3}{2}$ $g(2) = g\{f^{-1}(2)\}$ $=g(1)=\frac{3}{2}$

18. $\begin{cases} 2x+1 & (x\geq 1)\\ x+2 & (x<1) \end{cases}$ 에 대하여 $f^{-1}(5)+f^{-1}(k)=-2$ 일 때, k 의 값을 구하여라.

답:

> 정답: k = -2

 $f(x) = \begin{cases} 2x + 1 & (x \ge 1) \\ x + 2 & (x < 1) \end{cases}$ 에서 $x \ge 1$ 일 때, $f(x) \ge 3$ 이며 x < 1 일 때, f(x) < 3 이다. 이 때, $f^{-1}(5) + f^{-1}(k) = -2$ 에서 $f^{-1}(5) = a$ 라고 놓으면 $f(a) = 5 \ge 3$ 이므로 f(a) = 2a + 1 = 5 $\therefore a = 2$ 그러므로 $f^{-1}(k) = -4$ $f(-4) = -4 + 2 = k \ (\because -4 < 3)$ $\therefore k = -2$ **19.** 함수 $f(x) = x^2 - 4x + 6(x \ge 2)$ 의 역함수를 g(x)라 할 때, y = f(x)와 y = g(x)의 그래프의 두 교점 사이의 거리를 구했을 때, 옳은 것은 무엇인가?

① 1 ② $\sqrt{2}$ ③ $\sqrt{3}$ ④ 2 ⑤ $\sqrt{5}$

해설

해설

y = f(x)와 y = g(x)의 그래프의 두 교점은 y = f(x)의 그래프와 직선 y = x의 교점과 같다. $x^2 - 4x + 6 = x$ 에서 $x^2 - 5x + 6 = 0, (x - 2)(x - 3) = 0$ $\therefore x = 2$ 또는 x = 3 따라서 y = f(x) 와 y = g(x)의 그래프의 두 교점은 (2, 2), (3, 3)이고, 이 두 교점 사이의 거리는 $\sqrt{(3-2)^2 + (3-2)^2} = \sqrt{2}$

 $x^2 - 4x + 6 = x$, 즉 $x^2 - 5x + 6 = 0$ 의 두 근을 α, β 라 하면 이차방정식의 근과 계수의 관계에 의하여 $\alpha + \beta = 5, \alpha\beta = 6$ 따라서 y = f(x) 와 y = g(x) 의 그래프의 두 교점은 $(\alpha, \alpha), (\beta, \beta)$ 사이의 거리는 $\sqrt{(\alpha - \beta)^2 + (\alpha - \beta)^2} = \sqrt{2}\sqrt{(\alpha + \beta)^2 - 4\alpha\beta}$ $= \sqrt{2}\sqrt{5^2 - 4 \cdot 6} = \sqrt{2}$

- **20.** 일차함수 $f(x) = ax + b(a \neq 0)$ 의 그래프를 y = x 에대칭이동한 그래프의 함수를 g(x) 라고 하자. 두 함수 $f,\ g$ 가 $f(2)=5,\ g(2)=1$ 을 만족할 때, f(4) 의 값은?
- ① 7 ② 8 ③ 9 ④ 10
- **⑤**11

해설 함수 $f(x) = ax + b(a \neq 0)$ 의 그래프를

y = x 에 대하여 대칭이동한 그래프는 $y = f^{-1}(x)$ 의 그래프이다. 따라서 g(2) = 1 에서 $f^{-1}(2) = 1$ $\therefore f(1) = 2$

 $f(1) = a + b = 2, \ f(2) = 2a + b = 5$

- 위의 식에서 a = 3, b = -1 $\therefore f(x) = 3x - 1$
- $f(4) = 3 \cdot 4 1 = 11$