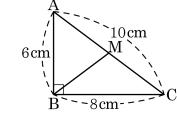
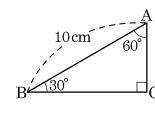
다음 그림은 $\angle B$ 가 직각인 삼각형이다. 점 M이 $\triangle ABC$ 의 외심이고, $\overline{AB}=6$ cm, $\overline{BC}=8$ cm, $\overline{CA}=10$ cm 일 때, $\triangle MBC$ 의 넓이는? 1.



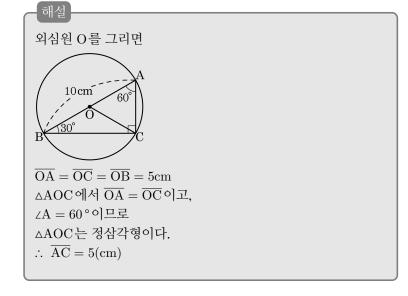
- $4 15 \text{cm}^2$
- 212cm² \bigcirc 16cm^2
- $3 13 \text{cm}^2$

직각삼각형의 외심은 빗변의 중심이므로 $\overline{\mathrm{MB}}$ 는 $\Delta\mathrm{ABC}$ 의 넓이를 이등분한다. $\therefore \Delta \mathrm{MBC} = \left(6 \times 8 \times \frac{1}{2}\right) \times \frac{1}{2} = 12 (\mathrm{cm}^2)$

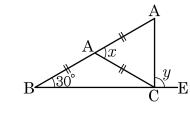
2. 다음 그림의 직각삼각형 ABC에서 $\overline{AB}=10\mathrm{cm}$ 일 때, \overline{AC} 의 길이는?



① 3cm ② 4cm ③ 5cm ④ 6cm ⑤ 7cm



3. 다음 그림에서 $\overline{AB}=\overline{AC}=\overline{AD}$, $\angle ABC=30^\circ$ 일 때, $\angle x+\angle y$ 의 크기를 구하여라.



③ 170°

 \bigcirc 190°

4 180°

② 160°

 $\overline{\mathrm{AB}}=\overline{\mathrm{AC}}=\overline{\mathrm{AD}}$ 이므로 빗변의 중점인 점 A 는 직각삼각형의

① 150°

외심이다. $\overline{\mathrm{AB}} = \overline{\mathrm{AC}}$ 이므로 $\Delta \mathrm{ABC}$ 는 이등변삼각형

 $\therefore \angle ACB = \angle ABC = 30^\circ$

삼각형의 외각의 성질에 의해 $\angle DAC = \angle ACB + \angle ABC =$

 $30^\circ + 30^\circ = 60^\circ$

 $\therefore \angle x = 60^{\circ} \cdots \bigcirc$

 $\overline{\mathrm{CA}} = \overline{\mathrm{AD}}$ 이므로

△ACD 는 이등변삼각형

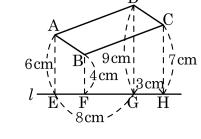
 $\therefore \angle ACD = \angle CDA = 60^{\circ} (\because \bigcirc)$

세 내각의 크기가 같으므로 삼각형 ACD 는 정삼각형이다. $\angle DCB = \angle ACD + \angle ACB = 60^{\circ} + 30^{\circ} = 90^{\circ}$

 $\angle DCE = 90^{\circ}$ 이다.

 $\therefore \angle y = 90^{\circ} \cdots \bigcirc$ ①, ⓒ에 의해서 $\angle x + \angle y = 60^\circ + 90^\circ = 150^\circ$

4. 다음 그림에서 □ABCD 는 평행사변형이다. 네 꼭짓점 A, B, C, D 와 직선 *l* 사이의 거리가 각각 6cm, 4cm, 7cm, 9cm 일 때, □ABCD 의 넓이를 구하여라.

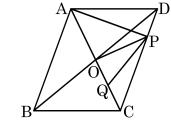


 $\underline{\mathrm{cm}^2}$

 ▷ 정답:
 25 cm²

▶ 답:

 $\Box ABCD$ = $(\Box AEGD + \Box DGHC) - (\Box AEFB + \Box BFHC)$ = $\left\{ (6+9) \times 8 \times \frac{1}{2} + (9+7) \times 3 \times \frac{1}{2} \right\}$ $-\left\{ (6+4) \times 3 \times \frac{1}{2} + (4+7) \times 8 \times \frac{1}{2} \right\}$ = (60+24) - (15+44)= $25(\text{cm}^2)$ 5. 다음 그림의 평행사변형 $\square ABCD$ 에서 $\overline{DP}:\overline{PC}=3:8$ 이고 $\triangle APC=90^\circ$ 라고 한다. $\overline{OQ}=\overline{QC}$ 일 때, $\triangle OQP$ 의 넓이는 $\square ABCD$ 의 넓이의 몇 배인가?



- (1) $\frac{1}{11}$ III (2) $\frac{1}{12}$ III (3) $\frac{1}{15}$ III (4) $\frac{1}{14}$ III (5) $\frac{1}{15}$ III
- $3 \frac{1}{13}$

$$\triangle OQP = \Box ABCD \times \frac{1}{2} \times \frac{1}{2} \times \frac{8}{11} \times \frac{1}{2}$$
$$= \Box ABCD \times \frac{1}{11}$$
$$\therefore \frac{1}{11} (H)$$

넓이가 $80\,\mathrm{cm}^2$ 인 다음 평행사변형 ABCD 에서 어두운 부분의 넓이 **6.**

- $\bigcirc 8 \, \mathrm{cm}^2$ $4 18 \,\mathrm{cm}^2$
- $2 12 \,\mathrm{cm}^2$

 $315\,\mathrm{cm}^2$

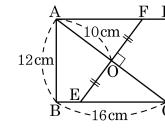
해설

- $\bigcirc \hspace{-0.07in} 20\,\mathrm{cm}^2$

 $\triangle APO \equiv \triangle CQO \text{ (ASA 합동)}$ $\triangle APO + \triangle DQO = \triangle OCD$

 $\triangle OCD = \frac{1}{4} \square ABCD = \frac{1}{4} \times 80 = 20 (\,\mathrm{cm}^2)$

7. 다음 그림의 $\square ABCD$ 는 직사각형이고 \overline{AC} 는 \overline{EF} 의 수직이등분선이다. $\overline{AB}=12\mathrm{cm}$, $\overline{BC}=16\mathrm{cm}$, $\overline{AO}=10\mathrm{cm}$ 일 때, \overline{EF} 의 길이는?



③ 14cm

4 15cm

 $\ \ \ \ 16cm$

 $\Delta {
m AOF} \equiv \Delta {
m COE} \; ({
m SAS} \; {
m \Bar{i} F}) \; {
m ol} \; \square \, \Xi \ \overline{
m AO} = \overline{
m CO} = 10 \; ({
m cm}), \; \overline{
m AC} = 20 \; ({
m cm})$

 \bigcirc 13cm

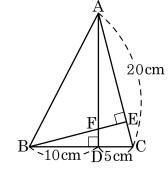
 $\triangle ABC \hookrightarrow \triangle EOC (AA 닮음) 이므로 <math>\overline{AB} \cdot \overline{BC} = \overline{EO} \cdot \overline{OC}$

 $\overline{AB} : \overline{BC} = \overline{EO} : \overline{OC}$ $12 : 16 = \overline{EO} : 10$

 $12:16 = \overline{EO}:10$ $\overline{EO} = \frac{15}{2} \text{ (cm)}$ $\overline{EF} = 15 \text{ (cm)}$

해설

 $\triangle ABC$ 의 꼭짓점 A, B 에서 변 BC, CA 에 내린 수선의 발을 각각 D, E, \overline{BE} 와 \overline{AD} 의 교점을 F 라 할 때, \overline{CE} 의 길이는? 8.



- ① $\frac{15}{4}$ cm ② 4 cm ④ $\frac{9}{2}$ cm ⑤ $\frac{19}{4}$ cm
- $3 \frac{17}{4} \text{ cm}$

△BCE ∽ △ACD (AA 닮음) 이므로

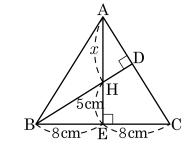
 $\overline{BC}: \overline{AC} = \overline{CE}: \overline{CD}$

 $(10+5):20=\overline{\rm CE}:5$

 $3:4=\overline{\text{CE}}:5$

 $4\overline{\text{CE}} = 15$ $\therefore \overline{\text{CE}} = \frac{15}{4} \text{ (cm)}$

 $\triangle ABC$ 에서 $\overline{BE}=\overline{CE}=8$ cm, $\overline{HE}=5$ cm 일 때, x 의 길이는? 9.



 $\ \, \textbf{4} \ \, \textbf{6cm}$

 \bigcirc 4cm

② 7.4cm ⑤7.8cm

312.8cm

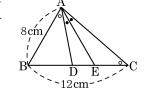
△HBE ∽ △CAE (AA 닮음)

 $\overline{\mathrm{HE}}:\overline{\mathrm{EB}}=\overline{\mathrm{CE}}:\overline{\mathrm{EA}}$ 5:8 = 8:(x+5)

5(x+5) = 645x = 39

 $\therefore x = 7.8(\text{cm})$

- 10. 다음 그림에서 $\angle BAD = \angle ACB$, $\angle DAE =$ $\angle {
 m EAC}$ 일 때, $\overline{
 m DE}$ 와 $\overline{
 m EC}$ 의 길이의 차를 구 하여라. ③ 1.5 cm
 - ① $0.5 \,\mathrm{cm}$ ② $\frac{4}{3} \,\mathrm{cm}$ \bigcirc 2.5 cm

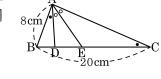


 $\textcircled{4} \ 2\,\mathrm{cm}$

 $\triangle ABD \hookrightarrow \triangle CBA$ $\overline{AB} : \overline{BD} = \overline{CB} : \overline{BA}$ $8 : \overline{BD} = 12 : 8, \ \overline{BD} = \frac{64}{12} = \frac{16}{3} (\text{cm})$

 $\overline{AD} : \overline{AC} = 2 : 3$ 이므로 $\overline{DE} : \overline{EC} = 2 : 3, \ \overline{DE} = \frac{8}{3} \text{ cm}, \ \overline{EC} = \frac{12}{3} \text{ cm}$ $\therefore \overline{EC} - \overline{DE} = \frac{12}{3} - \frac{8}{3} = \frac{4}{3} \text{ (cm)}$

11. △ABC 에서 ∠BAD = ∠ACE 이고 $\angle {
m DAE} = \angle {
m CAE}$ 이다. $5\overline{
m DE}$ 의 길이



 $\bigcirc 15\,\mathrm{cm}$ \bigcirc $18\,\mathrm{cm}$ $3 \ 20\,\mathrm{cm}$ 4 22 cm ⑤ 24 cm

∠BAD = ∠ACE 이고 ∠B 가 공통이므로 ΔABC 와 ΔDBA 는 AA 닮음

따라서 $8: \overline{BD} = 20:8$,

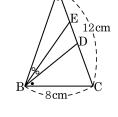
 $\overline{\mathrm{BD}} = \frac{16}{5} \,\mathrm{cm}$ 이코 $\overline{\mathrm{AC}} : \overline{\mathrm{AD}} = 5 : 2$ 그리고 $\triangle ADC$ 에서 \overline{AE} 가 각의 이등분선이므로 \overline{AD} : \overline{AC} =

 $\overline{\mathrm{DE}}:\overline{\mathrm{EC}}$ 이므로 $\overline{\rm DE}:\overline{\rm EC}=2:5$

따라서 $\overline{\mathrm{DE}} = \frac{2}{7} \left(20 - \frac{16}{5} \right) = \frac{24}{5} \; (\,\mathrm{cm})$

 $5\overline{\rm DE}=24\;(\,{\rm cm})$

- 12. $\triangle ABC$ 에서 선분 \overline{BD} , \overline{AE} 에 의해 $\angle B$ 가 나눠질 때, $\angle \text{CBD} = \angle \text{BAC}$ 이코 $\angle \text{ABE} = \angle \text{EBD}$ 이다. 이때 ED 의 길이는? ① 2 cm ② $\frac{8}{3} \text{ cm}$ ③ 3 cm ④ $\frac{10}{3} \text{ cm}$ ⑤ $\frac{11}{3} \text{ cm}$



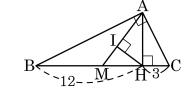
△ABC∽△BDC (AA 닮음)

 $\therefore 12:8=8:\overline{\text{CD}},\ \overline{\text{CD}}=\frac{16}{3}$

그리고 닮음비가 3:2 이므로 $\overline{BD}:\overline{BA}=2:3$ 이고 $\overline{BD}:\overline{BA}=\overline{DE}:\overline{EA}$ 에서

 $\overline{\mathrm{DE}}:\overline{\mathrm{EA}}=2:3$ 이다. 따라서 $\overline{\mathrm{ED}} = rac{2}{5}\overline{\mathrm{AD}} = rac{8}{3}\,\mathrm{cm}$

13. 다음 그림과 같이 $\angle A=90^\circ$ 인 직각삼각형 ABC에서 점 M이 \overline{BC} 의 중점이고, $\overline{AH}_{\perp}\overline{BC}$, $\overline{AM}_{\perp}\overline{HI}$ 일 때, \overline{AI} 의 길이를 구하면?



- ① $\frac{21}{5}$ ② $\frac{22}{5}$ ③ $\frac{23}{5}$ ④ $\frac{24}{5}$ ⑤ 5

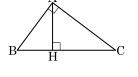
점 M 은 직각삼각형의 외심이므로 $\overline{\mathrm{AM}} = \frac{15}{2}$ $\triangle ABH$ $\hookrightarrow \triangle CAH$ 이므로 $\overline{AH}^2=12\times 3$

 $\triangle AIH$ $\hookrightarrow \triangle AHM$ 이므로 $6^2 = \overline{AI} \cdot \overline{AM}$

 $6^2 = \overline{\rm AI} \times \frac{15}{2}$

 $\therefore \overline{AI} = \frac{24}{5}$

14. 다음 그림은 ∠A = 90° 인 직각삼각형 ABC 의 꼭짓점 A 에서 변 BC 위에 수선의 발을 내린 것이다. 다음 중 옳지 <u>않은</u> 것은?

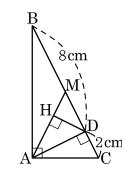


① △ABC∽△HBA

② $\triangle HAC \hookrightarrow \triangle HBA$ ④ $\overline{AC^2} = \overline{CH} \cdot \overline{CB}$

 $\overline{AH^2} = \overline{BH} \cdot \overline{CH}$

15. 다음 그림과 같이 $\angle A=90^\circ$ 인 $\triangle ABC$ 에서 점 M 이 외심일 때, \overline{DH} 의 길이는?



① 2 ② $\frac{12}{5}$ ③ $\frac{14}{5}$ ④ $\frac{16}{5}$ ⑤ $\frac{18}{5}$

 $\triangle ADB$ 와 $\triangle CDA$ 는 닮음이므로 $\overline{AD}^2=8\times 2=16$ 이다. 따라서 $\overline{AD}=4$ 이다. 점 M 이 외심이므로 $\overline{\mathrm{AM}}=5,\ \overline{\mathrm{MD}}=3$ 이다.

 $\triangle AMD$ 의 넓이는 $\frac{1}{2} \times \overline{MD} \times \overline{AD} = \frac{1}{2} \times 3 \times 4 = 6$ 이다. $6 = \frac{1}{2} \times 5 \times \overline{\mathrm{DH}}, \ \ \therefore \overline{\mathrm{DH}} = \frac{12}{5}$