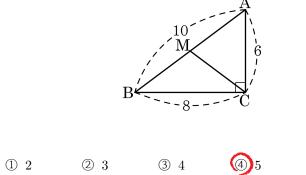
1. 다음 그림과 같은 직각삼각형 ABC의 빗변의 중점을 M이라고 할 때, ™C의 길이는?



⑤ 6

점 M은 직각삼각형 ABC의 외심이므로

 $\overline{MA} = \overline{MB} = \overline{MC}$ 이다. $\therefore \overline{\mathrm{MC}} = 5$

- **2.** 다음 조건 중에서 사각형 ABCD 는 평행 사변형이 될 수 $\underline{\text{없는}}$ 것은?
 - $\overline{\text{1}}\overline{\text{AD}}//\overline{\text{BC}}, \overline{\text{AB}} = \overline{\text{DC}}$
 - ② $\angle A = \angle C, \angle B = \angle D$
 - $3 \angle B + \angle C = 180^{\circ}, \angle A + \angle B = 180^{\circ}$
 - ④ $\overline{AO} = \overline{CO}, \overline{BO} = \overline{DO}$ (점 O는 대각선의 교점이다. ⑤ $\overline{AD}//\overline{BC}, \overline{AB}//\overline{DC}$

① 반례는 등변사다리꼴이 있다.

- $\square ABCD$ 에서 $\overline{AD} /\!/ \overline{BC}$ 이고 $\overline{AB} = \overline{AD}$ 일 3. 때, x 의 크기는?

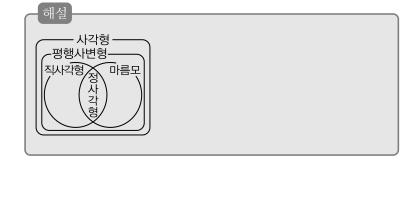
 - ① 65° ② 68°
- 3 70°

⑤80° **④** 75 °

해설

 $\angle \mathrm{DBA} = \angle \mathrm{ADB} = (180\,^{\circ} - 130\,^{\circ}) \div 2 = 25\,^{\circ}$ x = 180° - (25° + 75°) = 80°

- 4. 사다리꼴, 평행사변형, 직사각형, 마름모, 정사각형의 관계를 나타낸 것 중 옳지 <u>않은</u> 것은?
 - ① 정사각형은 사다리꼴이다.
 - ② 정사각형은 직사각형이면서 마름모이다.
 - ③ 직사각형은 평행사변형이다.
 - ④ 직사각형은 마름모이다. ⑤ 직사각형은 사다리꼴이다.



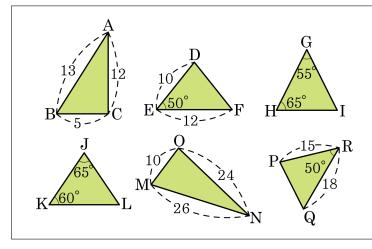
5. 다음 보기 중에서 두 대각선의 길이가 같은 사각형은 모두 몇 개인가?

보기
① 등변사다리꼴
② 직사각형
② 정사각형
② 평행사변형
① 1개 ② 2개 ③ 3개 ④ 4개 ⑤ 5개

두 대각선의 길이가 같은 사각형은 직사각형, 정사각형, 등변사

다리꼴이다. 따라서 ①, ©, @ 3 개이다. ______

다음 중 닮음인 도형끼리 짝지은 것을 모두 고르면? (정답 3개) **6.**



②∆GHI∽∆LJK

♠ △ABC ∽ △NMO

- ① $\triangle ABC \bigcirc \triangle PRQ$ \bigcirc \triangle DEF \bigcirc \triangle LJK
- ⑤ △DEF∽△PRQ

② ΔGHI 와 ΔLJK 에서

 $\angle I = 180^{\circ} - (55^{\circ} + 65^{\circ}) = 60^{\circ} = \angle K$,

 $\mathrm{LH} = \mathrm{LJ} = 65^{\circ}$

∴ △GHI∽ △LJK (AA 닮음) ④ ΔABC 와 ΔNMO 에서

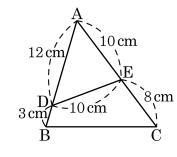
 $\overline{AB}: \overline{NM} = \overline{BC}: \overline{MO} = \overline{CA}: \overline{ON} = 1:2$

∴ △ABC ∽ △NMO (SSS 닮음) ⑤ Δ DEF 와 Δ PRQ 에서

 $\overline{DE}:\overline{PR}=\overline{EF}:\overline{RQ}=2:3$, $\angle E=\angle R=50^\circ$

∴ △DEF ∽ △PRQ (SAS 닮음)

7. 다음 그림에서 \overline{BC} 의 길이는?



① 13cm

② 14cm

③15cm

④ 16cm

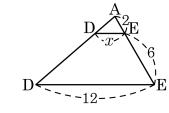
⑤ 17cm

∠A가 공통이고, $\overline{\mathrm{AB}}:\overline{\mathrm{AE}}=\overline{\mathrm{AC}}:\overline{\mathrm{AD}}=3:2$ 이므로

△ABC ∽ AED (SAS 닮음) $3:2=\overline{\mathrm{BC}}:10$

 $\overline{BC} = 15 (cm)$

8. 다음 그림에서 $\overline{\mathrm{BC}}//\overline{\mathrm{DE}}$ 가 되도록 하려면 x 의 길이는 얼마로 정하 여야 하는가?



① 2

③ 4 ④ 5 ⑤ 6

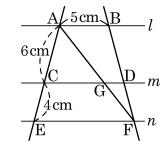
 $\overline{\mathrm{BC}}//\overline{\mathrm{DE}}$ 가 되려면 $\overline{\mathrm{AE}}:\overline{\mathrm{AC}}=\overline{\mathrm{DE}}:\overline{\mathrm{BC}}$ 이다.

해설

2:8=x:128x = 24

 $\therefore x = 3$

다음 그림에서 l//m//n 일 때, $\overline{\mathrm{GD}}$ 의 길이는? 9.



- ① 1cm
- ② 1.5cm
- ④ 2.5cm ⑤ 3cm

③2cm

l//m//n 이고 $\overline{\mathrm{AC}}:\overline{\mathrm{CE}}=\overline{\mathrm{BD}}:\overline{\mathrm{DF}}=6:4$ 이므로 $\overline{\mathrm{GF}}:\overline{\mathrm{AF}}=4:10$, 4:10=x:5 이다. $\therefore x = 2$ cm

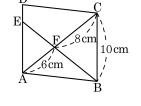
10. 다음은 평행사변형이다. 선분 AE의 길이를 구하면?

①7.5cm

4 8.5cm

② 6.5cm ③ 9.5cm

③ 5.5cm

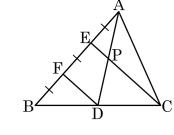


해설)

△AFE ○ △CFB 이므로 6:8 = ĀĒ:10

 $\therefore \overline{\rm AE} = 7.5 \rm cm$

11. 다음 그림의 $\triangle ABC$ 에서 E, F 는 \overline{AB} 의 3 등분점이고, \overline{AD} 는 중선이다. $\overline{EP}=6cm$ 일 때, \overline{PC} 의 길이를 구하면?



312cm

(5) 18cm

4 15cm

 $\overline{\mathrm{FD}} = 2\overline{\mathrm{EP}} = 12\mathrm{cm}$

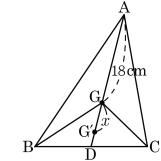
해설

 $\overline{\mathrm{CE}} = 2\overline{\mathrm{FD}} = 24\mathrm{cm}$

 $\therefore x = \overline{CE} - \overline{EP} = 24 - 6 = 18(cm)$

 \bigcirc 9cm

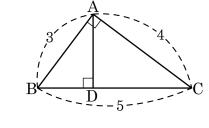
12. 점 G 는 $\triangle ABC$ 의 무게중심이고 점 G'는 $\triangle GBC$ 의 무게중심이다. $\overline{AG}=18\mathrm{cm}$ 일 때, x 를 구하면?



① 3cm ② 6cm ③ 8cm ④ 9cm ⑤ 12cm

 $\overline{GD} = \frac{1}{2}\overline{AG} = 9(cm) , x = \frac{2}{3}\overline{GD} = 6(cm)$

13. 다음 그림의 직각삼각형 ABC 의 꼭짓점 A 에서 빗변 BC 에 내린 수선의 발을 D 라고 할 때, \triangle ABD, \triangle CAD, \triangle CBA 의 넓이의 비는?



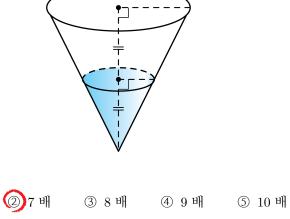
① 1:2:3 ④ 5:8:12 ② 2:4:9 ⑤9:16:25

③ 3:5:7

해설

닮음비가 3:4:5 이므로, 넓이의 비는 $3^2:4^2:5^2=9:16:25$

14. 다음 그림과 같은 원뿔 모양의 그릇에 그 깊이의 반까지 물을 부었다. 그릇을 가득히 채우려면 지금 들어 있는 물의 몇 배를 더 부어야 하는 가?

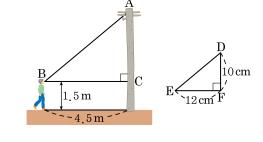


① 6 배

닮음비가 2:1 이므로 부피의 비는 8:1

 $\therefore 8-1=7(\text{HH})$

15. 다음 그림과 같이 전봇대의 높이를 재기 위하여 축도를 그렸다. $\overline{\rm EF}=12{
m cm}$ 일 때, 전봇대의 실제의 높이를 구하면?



(4) 5.25m

② 5.12m ③ 5.4m ③ 5.2m

 \bigcirc 5m

 $\overline{AC} : \overline{DF} = \overline{BC} : \overline{EF}$

 \overline{AC} : 10 = 450 : 12 \overline{AC} = 375(cm) = 3.75(m)

따라서 전봇대의 높이는 3.75 + 1.5 = 5.25(m) 이다.

16. 다음은 「두 내각의 크기가 같은 삼각형은 이등변삼각형이다.」를 보이는 과정이다.

∠A 의 이등분선과 변 BC 와의 교점을 D 라 하면
△ABD 와 △ACD 에서
∠BAD= (②) ··· ③
AD 는 공통 ··· ⑥
∠B = (④) 이므로
∠ADB= (⑥) ··· ⑥
③, ⑥, ⑥에 의해
△ABD ≡ △ACD (②) 합동)이므로
(⑩)
∴ △ABC 는 이등변삼각형이다.

① (②) ∠CAD

② (🕒) ∠C

 (a) SAS

 $\angle A$ 의 이등분선과 변 BC 와의 교점을 D 라 하면

△ABD 와 △ACD 에서 ∠BAD = ∠CAD···⊙

 $(②) \sim (③)$ 에 들어갈 것으로 옳지 <u>않은</u> 것은?

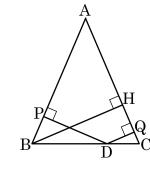
| AD 는 공통 · · · © | ∠B=∠C 이므로

∠ADB=∠ADC · · · © ⑤, ⓒ, ⓒ 에 의해 △ABD ≡ △ACD (ASA 합동)이므로

 $\overline{AB} = \overline{AC}$

.: ΔABC 는 이등변삼각형이다.

17. 다음 그림에서 $\triangle ABC$ 는 이등변삼각형이다. \overline{BC} 위의 한 점 D 에서 $\overline{AB},\ \overline{AC}$ 에 내린 수선의 발을 각각 P,Q 라 할 때, $\overline{DP}=7\mathrm{cm},\ \overline{DQ}=$ $3 \mathrm{cm}$ 이다. 점 B 에서 $\overline{\mathrm{AC}}$ 에 내린 수선의 길이는?



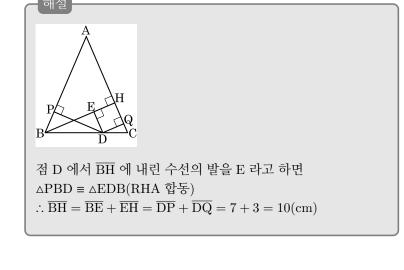
4 10cm

③ 9cm

 $\ \ \ \ 11cm$

② 8cm

① 7cm

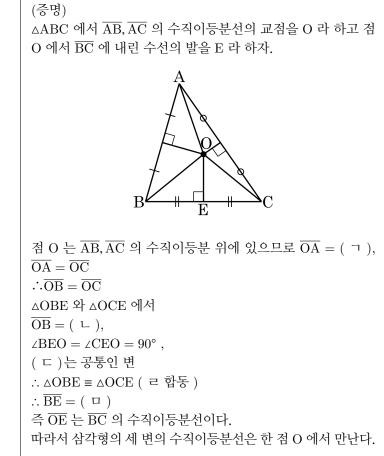


- 18. 다음 그림의 $\triangle ABC$ 는 $\overline{AC} = \overline{BC}$ 인 직각이등 변삼각형이다. 빗변 AB 위에 $\overline{\mathrm{AC}}=\overline{\mathrm{AD}}$ 가 되 게 점 D 를 잡고, 점 D 를 지나며 \overline{AB} 에 수직인 직선과 $\overline{\mathrm{BC}}$ 와의 교점을 E 라 할 때, $\overline{\mathrm{EC}}=6\mathrm{cm}$ 이다. ΔBDE 의 넓이는? $2 14 \text{cm}^2$ $3 16 \text{cm}^2$
- 418cm^2
- \bigcirc 20cm²

해설

 $\triangle ADE \equiv \triangle ACE \text{ (RHS 합동)}$ 이므로 $\overline{DE} = \overline{CE} = 6 \text{cm}$, $\triangle BDE = \overline{A}$ 직각이등변삼각형이므로 $\overline{DE} = \overline{DB} = 6 \text{cm}$ $\therefore \triangle BDE = \frac{6 \times 6}{2} = 18 (cm^2)$

19. 다음은 삼각형의 세 변의 수직이등분선이 한 점에서 만남을 증명하는 과정이다. ()안에 들어갈 내용으로 옳지 <u>않은</u> 것은?

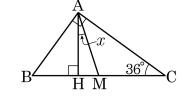


④ =. SSS ⑤ □. CE

① $\neg . \overline{OB}$ ② $\vdash . \overline{OC}$ ③ $\vdash . \overline{OE}$

 \triangle OBE = \triangle OCE 는 RHS 합동이다.

20. 다음 그림에서 점 M 은 직각삼각형 ABC 의 외심이고 $\angle C = 36^{\circ}$ 일 때, $\angle x$ 의 크기를 구하여라.



① 15°

②1

③ 20°

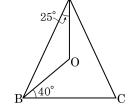
④ 22°

⑤ 25°

직각삼각형의 외심은 빗변의 중점이므로 $\overline{\mathrm{AM}} = \overline{\mathrm{CM}} = \overline{\mathrm{BM}}$

AM = CM 이므로 △AMC 은 이등변삼각형이다. 따라서 ∠ACM = ∠CAM = 36°···⑤ 또, 삼각형의 내각의 합은 180° 이므로 ∠ABC = 180° - 90° - 36° = 54° 이다. ∠BAH = 180° - ∠ABC - 90° = 180° - 54° - 90° = 36°···⑥ ∠A = 90°이고, ∠HAM = ∠A - ∠BAH - ∠CAM 이므로 ⑤, ⑥에 의해서 ∠HAM = 90° - 36° - 36° = 18° 따라서 x = 18° 이다.

- **21.** 다음 그림에서 점 O 는 \triangle ABC 의 외심이다. $\angle {\rm OAB} = 25\,^{\circ}$, $\angle {\rm OBC} = 40\,^{\circ}$ 일 때, $\angle {\rm C}$ 의 크 기는?
 - ① 45° ② 50° ③ 55° ⑤ 65° ④ 60°



 $\overline{\mathrm{OC}}$ 를 이으면

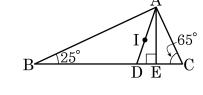
해설

 $\angle OAB + \angle OBC + \angle OCA = 90$ ° 이므로

 $25\,^{\circ} + 40\,^{\circ} + \angle \text{OCA} = 90\,^{\circ},\, \angle \text{OCA} = 25\,^{\circ}$

 $\angle \mathrm{OBC} = \angle \mathrm{OCB} = 40\,^{\circ}$ $\therefore \ \angle{\rm C} = \angle{\rm OCB} + \angle{\rm OCA} = 65\,^{\circ}$

22. 다음 그림에서 점 I 는 $\triangle ABC$ 의 내심이다. $\overline{AE} \bot \overline{BC}$ 일 때, $\angle DAE$ 의 크기는?



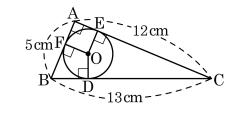
① 15° ② 17° ③ 18°

⑤ 22°

 $\angle A = 180^{\circ} - (25^{\circ} + 65^{\circ}) = 90^{\circ}$ $\angle DAC = \frac{1}{2} \times 90^{\circ} = 45^{\circ}$

$$\therefore \angle DAE = 45^{\circ} - 25^{\circ} = 20^{\circ}$$

23. 다음 그림과 같은 직각삼각형에서 내접원의 넓이는?



 $4 16\pi \,\mathrm{cm}^2$

① $2\pi \,\mathrm{cm}^2$

 $24\pi \,\mathrm{cm}^2$ $\bigcirc 25\pi\,\mathrm{cm}^2$

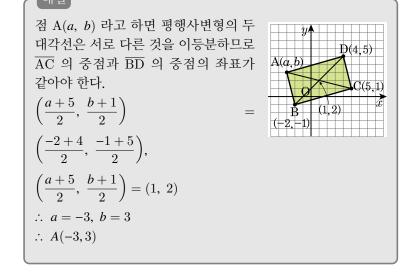
 $3 9\pi \,\mathrm{cm}^2$

내접원의 반지름의 길이를 $x \, \mathrm{cm}$ 라 하면,

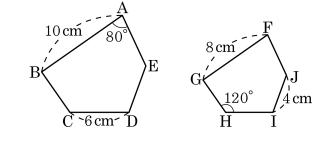
 $\overline{\mathrm{AF}} = \overline{\mathrm{AE}} = x$, $\overline{\mathrm{BF}} = \overline{\mathrm{BD}} = 5 - x$, $\overline{\text{CE}} = \overline{\text{CD}} = 12 - x$ 이므로 (5-x) + (12-x) = 13 $\therefore x = 2$

따라서 내접원의 넓이는 $4\pi\,\mathrm{cm}^2$

- **24.** 좌표평면 위의 점 A, B(-2, -1), C(5, 1), D(4, 5) 로 이루어지는 $\square ABCD$ 가 평행사변형이 되도록 점 A 의 좌표는? (단, 점 A는 제 2 사분면 위에 있다.)
 - **3**(-3, 3) ① (-1, 3) ② (-1, 2)4 (-3, 2) 5 (-3, 4)



25. 다음 그림에서 두 오각형 ABCDE와 FGHIJ는 닮은 도형이다. 이 때, $\angle F$ 의 크기와 \overline{DE} 의 길이는?



 \bigcirc $\angle F = 75^{\circ}, \overline{DE} = 5 \text{ cm}$

① $\angle F = 60^{\circ}, \overline{DE} = 4 \text{ cm}$

4 $\angle F = 80^{\circ}, \overline{DE} = 5 \text{ cm}$

② $\angle F = 70^{\circ}, \overline{DE} = 4 \text{ cm}$

오각형ABCDE ∽ 오각형FGHIJ 이고, 닮음비는 \overline{AB} : \overline{FG} =

10 : 8 = 5 : 4 이다. 닮은 도형에서 대응하는 각의 크기는 서로 같으므로 ∠F 의 크기 는 대응각 ∠A 와 같다.

∴ ∠F = 80° 이다. 닮음비가 5 : 4 이므로 DE : IJ = 5 : 4 = DE : 4 이다.

| 닮음비가 5 : 4 ° | ∴ DE = 5 cm

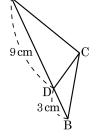
26. 그림 속 두 삼각형 \triangle ABC 와 \triangle CBD 가 닮은 도형일 때, $\overline{\mathrm{BC}}$ 의 길이는?

 $\bigcirc 6 \, \mathrm{cm}$

 $\bigcirc 3 \, \mathrm{cm}$

 \bigcirc 5 cm \bigcirc 2 cm

 $34 \, \mathrm{cm}$

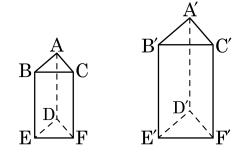


 $\triangle ABC \circlearrowleft \triangle CBD$ $\overline{\mathrm{AB}}:\overline{\mathrm{CB}}=\overline{\mathrm{BC}}:\overline{\mathrm{BD}}$

 $12 : \overline{BC} = \overline{BC} : 3$ $\overline{BC}^2 = 36$ $\therefore \overline{BC} = 6 \text{ cm } (\because \overline{BC} > 0)$

해설

27. 다음 그림과 같은 두 닮은 삼각기둥에서 다음 중 옳지 <u>않은</u> 것은?



- ② □BEFC ∽ □B′E′F′C′

① $\triangle DEF \bigcirc \triangle D'E'F'$

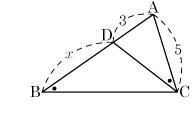
- ③ $\angle ABC = \angle A'B'C' = \angle D'E'F'$ ④ $\overline{AB} : \overline{A'B'} = \overline{BE} : \overline{B'E'}$

두 닮은 입체도형에서 대응하는 면은 서로 닮음이고 대응하는

해설

모서리의 비는 일정하다. ⑤ 닮음인 도형의 넓이는 닮음비에 따라 다르다.

28. 다음 그림에서 $\angle ACD = \angle DBC$, $\overline{AC} = 5$, $\overline{AD} = 3$ 일 때, x의 길이는?



① 5 ② $\frac{16}{3}$ ③ $\frac{20}{3}$ ④ $\frac{22}{5}$

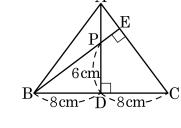
⑤ 5.5

해설 ΔACD 와 ΔABC 에서 ∠A는 공통, ∠ACD = ∠DBC 이므로

△ACD ♡ △ABC (AA 닮음) 이다. ∴ \overline{AC} : \overline{AD} = \overline{AB} : \overline{AC}

따라서 5:3=(3+x):5 이고, $x=\frac{16}{3}$ 이다.

29. 다음 그림과 같은 $\triangle ABC$ 에서 $\overline{AD} \bot \overline{BC}$, $\overline{AC} \bot \overline{BE}$ 이고, \overline{BE} 와 \overline{AD} 의 교점을 P 라고 한다. $\overline{BD} = \overline{DC} = 8 \mathrm{cm}$, $\overline{PD} = 6 \mathrm{cm}$ 일 때, \overline{AP} 의 길이는?



 $\bigcirc \frac{14}{3}$ cm $\bigcirc \frac{17}{3}$ cm

① 2cm

- ② 1.5cm
- ③ 2.5cm

 $\triangle BDP$ 약 $\triangle ADC$ 에서 $\angle PBD = \angle CAD$

해설

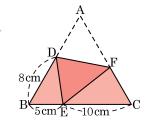
∠PDB = ∠CDA = 90° 이므로 $\triangle BDP \hookrightarrow \triangle ADC \text{ (AA 닮음)}$ $\overline{BD} : \overline{PD} = \overline{AD} : \overline{CD} \text{ 이므로 } 8 : 6 = \overline{AD} : 8$

 $\overline{AD} = \frac{32}{3}$ $\therefore \overline{AP} = \frac{32}{3} - 6 = \frac{14}{3} \text{ (cm)}$

30. 다음 그림과 같이 정삼각형 ABC 의 꼭짓점 A 가 변 BC 위의 점 E 에 오도록 접었다. $\overline{\mathrm{BD}}=8\mathrm{cm}$, $\overline{\mathrm{BE}}=5\mathrm{cm}$, $\overline{\mathrm{EC}}=10\mathrm{cm}$ 일

때, $\overline{\mathrm{AF}}$ 의 길이를 구하면?

① 8cm ② $\frac{35}{4}$ cm ④ $\frac{25}{4}$ cm ⑤ 6cm



 $\angle A = \angle B = \angle C = \angle DEF = 60^{\circ}$

 $\angle \mathrm{BDE} = \angle \mathrm{CEF}$ $\triangle BDE \hookrightarrow \triangle CEF(AA닮음)$

 $\overline{BD}:\overline{CE}=8:10=4:5$

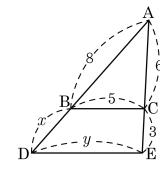
 ΔABC 가 정삼각형이므로 $\overline{AB}=\overline{BC}=\overline{CA}$ 이고, 한 변의 길이

는 15cm 이다. 따라서, $\overline{AD} = \overline{DE} = 7$, $4:5=7:\overline{EF}$

3 7cm

 $\therefore \overline{\mathrm{EF}} = \frac{35}{4} = \overline{\mathrm{AF}}$

31. 다음 그림에서 $\overline{\mathrm{BC}}\,/\!/\,\overline{\mathrm{DE}}$ 일 때, x+y 의 값은?



해설

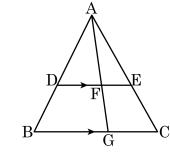
① 11.5 ② 12 ③ 13.5 ④ 14 ⑤ 14.5

 $\overline{\mathrm{AB}}:\overline{\mathrm{BD}}=\overline{\mathrm{AC}}:\overline{\mathrm{CE}}$ 이므로 8:x=6:3

 $6x = 24 \qquad \therefore \quad x = 4$ $\overline{\mathrm{AC}}:\overline{\mathrm{AE}}=\overline{\mathrm{BC}}:\overline{\mathrm{DE}}$ 이므로 6:9=5:y

 $6y = 45 \qquad \therefore y = 7.5$ $\therefore x + y = 4 + 7.5 = 11.5$

 ${f 32}$. 다음 그림에서 $\overline{
m BC}//\overline{
m DE}$ 일 때, 다음 중 성립하지 <u>않는</u> 것은?



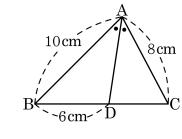
- ① $\overline{AD} : \overline{DB} = \overline{AE} : \overline{EC}$

$$\overline{\mathrm{DB}} - \overline{\mathrm{GC}}$$

$$\overline{\mathrm{BC}}//\overline{\mathrm{I}}$$

$$\overline{\overline{BC}}//\overline{DE}$$
 이므로 ④ $\frac{\overline{FE}}{\overline{GC}}=\frac{\overline{AF}}{\overline{AG}}=\frac{\overline{AD}}{\overline{AB}}$ 로 고쳐야 한다.

33. 다음 그림과 같은 $\triangle ABC$ 에서 $\angle A$ 의 이등분선이 \overline{BC} 와 만나는 점을 D 라 할 때, \overline{BC} 의 길이는?



4 10.6 cm

 $\bigcirc 10\,\mathrm{cm}$

② 10.2 cm ③ 10.8 cm

③ 10.4 cm

해설

10.0011

 $\overline{AB} : \overline{AC} = \overline{BD} : \overline{DC}$

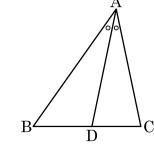
BC = x라 하면 10:8=6:(BC-6)

 $10(\overline{BC} - 6) = 48$

 $10\overline{\overline{BC}} - 60 = 48$ $10\overline{\overline{BC}} = 108$

 $\overline{BC} = 108$ (cm)

34. 다음 그림의 삼각형 ABC 에서 $\overline{\rm AD}$ 는 $\angle {\rm A}$ 의 이등분선이고, $\overline{\rm AB}$: $\overline{\rm AC}=6:5$ 이다. 삼각형 ACD 의 넓이가 $12{
m cm}^2$ 일 때, 삼각형 ABD 의 넓이를 구하면?

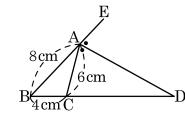


- 4 10cm^2
- \bigcirc 22cm²

$\overline{\mathrm{BD}}:\overline{\mathrm{DC}}=6:5$ 이므로 $\triangle\mathrm{ABD}:\triangle\mathrm{ADC}=6:5$

 $\triangle ABD : 12 = 6 : 5$ $\therefore \triangle ABD = \frac{72}{5}(cm^2)$

35. 삼각형 ABC 에서 \overline{AD} 가 $\angle CAE$ 의 이등분선일 때, \overline{CD} 의 길이를 구하여라.(단, 점 D 는 $\angle A$ 의 외각의 이등분선과 \overline{BC} 의 연장선과의 교점이다.)



④ 14 cm

 \bigcirc 8 cm

② 10 cm ③ 16 cm ③12 cm

해설 8:6=(4+x):x

 $\therefore x = 12$

- **36.** 다음 그림과 같이 ∠C = 90°인 △ABC에 서 ∠A의 이등분선과 ĀB의 수직이등분선이 BC위의 점 D에서 만날 때, ∠MAD의 크기는?
- C D B
- ① 10° ② 20° ③ 30° ④ 40° ⑤ 50°

 \triangle ACD \equiv \triangle AMD (RHA합동),

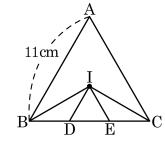
해설

△AMD ≡ △BMD (SAS합동)이므로 ∠ADC = ∠ADM = ∠BDM

한편 ∠ADC + ∠ADM + ∠BDM = 180°이므로

∠ADC = ∠ADM = ∠BDM = 60° 따라서 ∠MAD = 30°이다.

 ${f 37.}$ 다음 그림에서 점 I 는 정삼각형 ABC 의 내심이다. ${f \overline{AB}}/{f \overline{ID}},$ ${f \overline{AC}}/{f \overline{IE}}$ 이고 $\overline{\mathrm{AB}}=11\mathrm{cm}$ 일 때, $\Delta \mathrm{IDE}$ 의 둘레의 길이는?

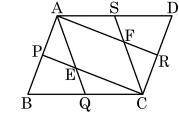


- ① $\frac{11}{3}$ cm ④ 12cm
- ② $\frac{11}{2}$ cm ⑤ 13cm

③11cm

 $\angle ABI = \angle IBD$ 이고 $\angle ABI = \angle BID(\because \overline{AB}//\overline{ID})$ 이므로 $\angle IBD =$ $\angle BID$ 이다. $\Rightarrow \overline{BD} = \overline{ID}$ 같은 방법으로 $\angle ACI = \angle ICE$ 이고 $\angle ACI = \angle CIE$ ($\because \overline{AC}//\overline{IE}$) 이므로 $\angle ICE = \angle CIE$ 이다. $\Rightarrow \overline{IE} = \overline{EC}$ 이다. 따라서 (ΔIDE 의 둘레의 길이) = $\overline{ID}+\overline{DE}+\overline{IE}=\overline{BD}+\overline{DE}+$ $\overline{\mathrm{EC}} = \overline{\mathrm{BC}} = 11 \mathrm{(cm)}$ 이다.

38. 평행사변형 ABCD 에서 각 변의 중점을 P, Q, R, S 라 할 때, 다음 그림에서 생기는 평행사변형은 □ABCD 를 포함해서 몇 개인지를 구하여라.



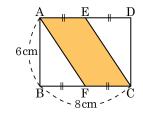
③ 3 개

④ 4 개 ⑤ 5 개

□ABCD, □AQCS, □APCR, □AECF

① 1개 ② 2개

39. 직사각형 ABCD 에서 어두운 도형의 넓이는



① 22

②24 ③ 26 ④ 28

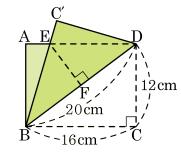
⑤ 30

 $\overline{AE} = \overline{FC}$, $\overline{AE} \, / \! / \, \overline{FC}$ 하므로

해설

□AFCE 는 평행사변형이다. $\overline{\mathrm{CF}} = 4$ 이므로 $\square\mathrm{AFCE} = 4 \times 6 = 24$

40. 다음 그림과 같이 직사각형 ABCD를 대각선 BD를 접는 선으로 하여 접었을 때, EF의 길이는?



4 8.5cm

① 7cm

②7.5cm \bigcirc 9cm

 \Im 8cm

□ABCD는 직사각형이므로

 $\overline{AB}=\overline{DC}=\overline{C'D}=12cm$, $\overline{AD}=\overline{BC}=\overline{BC'}=16cm$ i) $\angle AEB = \angle C'ED$, $\angle A = \angle C' = 90^{\circ}$

 $\overline{AB} = \overline{C'D}$ \therefore $\triangle AEB = \triangle C'ED (ASA 합동)$

합동인 두 도형의 대응변으로 $\overline{\mathrm{EB}} = \overline{\mathrm{ED}}$ 이므로 $\Delta \mathrm{EBD}$ 는 이등 변삼각형이다.

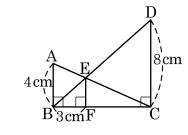
ii) 이등변삼각형의 꼭지각에서 밑변에 내린 수선은 밑변을 수직이등분하므로

 $\overline{BF} = \frac{1}{2}\overline{DB} = 10cm$ iii) \angle C'BD는 공통, \angle EFB = \angle DC'B = 90°

∴△EFB∽△DC′B (AA 닮음) $10:16=\overline{\rm EF}:12$

 $\therefore \overline{\rm EF} = \frac{15}{2} = 7.5 ({\rm cm})$

41. 다음 그림과 같이 $\overline{AB}//\overline{EF}//\overline{CD}$ 이고 $\overline{AB}=4\mathrm{cm}$, $\overline{BF}=3\mathrm{cm}$, $\overline{\mathrm{CD}} = 8\mathrm{cm}$, $\angle\mathrm{DCF} = 90^\circ$ 라 할 때, $\Box\mathrm{EFCD}$ 의 넓이는?



- $\textcircled{1} \ \ 20 \mathrm{cm}^2$ 4 36cm^2
- \bigcirc 24cm² \bigcirc 40cm^2
- 32cm^2

해설

$\overline{AB}:\overline{CD}=\overline{AE}:\overline{CE}=1:2$ 이다. i) $\overline{BE}:\overline{DE}=1:2$ 이므로 $\overline{EF}:\overline{CD}=1:3$ 이다.

- 따라서 $\overline{EF}:8=1:3$ 이므로 $\overline{EF}=\frac{8}{3}\,\mathrm{cm}$ 이다. ii) $1:2=3:\overline{CF},\;\overline{CF}=6(\,\mathrm{cm})$
- ∴ □EFCD = $\frac{1}{2} \times 6 \times \left(8 + \frac{8}{3}\right) = 3 \times \frac{32}{3} = 32 \text{(cm}^2\text{)}$

42. 다음 $\triangle ABC$ 에서 \overline{AB} 의 연장선 위에 \overline{AB} = $\overline{\mathrm{AD}}$ 인 점D 를 잡았다. $\overline{\mathrm{AE}} = \overline{\mathrm{CE}}$ 인 점 E 에 대하여 $\overline{\mathrm{DE}}$ 의 연장선과 $\overline{\mathrm{BC}}$ 가 만나는 점 을 F 라고 할 때, \overline{BC} 의 길이를 구하면?

① 5 ③ 12

4 17 ⑤ 20

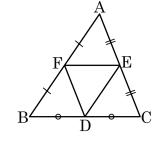
 $\angle GAE = \angle ECF()$ 숙각), $\angle AEG = \angle FEC(맞꼭지각)$, $\overline{AE} = \overline{CE}$

 $\therefore \triangle \mathrm{EGA} = \triangle \mathrm{EFC}(\mathrm{ASA}$ 합동) $\therefore \overline{\mathrm{CF}} = \overline{\mathrm{AG}} = 3, \overline{\mathrm{BF}} = 2\overline{\mathrm{AG}} = 6$

 $\therefore 3 + 6 = 9$

해설

43. 다음 그림에서 점 D, E, F 는 각각 \overline{BC} , \overline{CA} , \overline{AB} 의 중점이다. ΔDEF 의 넓이가 $3cm^2$ 일 때, ΔABC 의 넓이는?



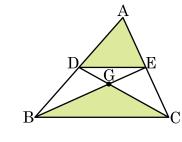
 12cm^2 15cm^2

② 13cm^2 ③ 16cm^2 ③ 14cm²

△AFE ≡ △BDF ≡ △DCE ≡ △FED (SSS 합동)이므로 △ABC

의 넓이는 $4 \times \Delta DEF = 4 \times 3 = 12 (cm^2)$ 이다.

44. 다음 그림에서 점 G가 \triangle ABC의 무게중심일 때, \triangle ADE와 \triangle GBC의 넓이의 비는?

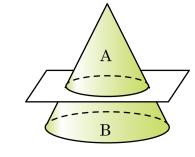


① 1:1 ② 2:3 ③ 3:2 3:4 ⑤ 4:3

점 G가 무게중심이므로 $\Delta ADE = \frac{1}{4}\Delta ABC, \Delta GBC = \frac{1}{3}\Delta ABC$ 이므로

$$\triangle ADE : \triangle GBC = \frac{1}{4} \triangle ABC : \frac{1}{3} \triangle ABC$$
$$= \frac{1}{4} : \frac{1}{3} = 3 : 4$$

45. 다음 그림과 같이 원뿔의 밑면에 평행하도록 자른 원뿔대의 높이가 2cm 이었을 때, 처음 원뿔의 높이를 구하면?(단, 잘린 원뿔 A 의 부피는 8cm³ 이고, 원뿔대 B 의 부피는 19cm³ 이다.)



① 2cm

② 4cm

③ 5cm

46cm

⑤ 8cm

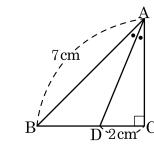
해설 잘린 원뿔 A 의 부피는 8cm³ 이고, 원뿔대 B 의 부피는 19cm³

이므로 원뿔 A 와 처음 원뿔의 부피의 비는 8 : 27 이다.

따라서 두 원뿔의 닮음비는 2 : 3 이다. 이때, 원뿔대의 높이가 2cm 이므로 처음 원뿔의 높이는 6cm

이다.

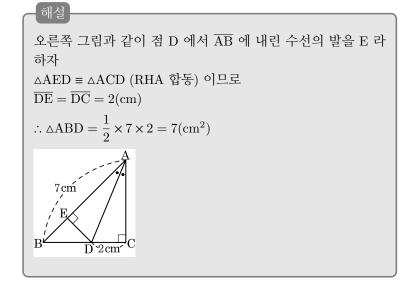
46. 다음 그림과 같이 $\angle C = 90^\circ$ 인 직각삼각형 ABC 에서 $\angle A$ 의 이등분 선이 \overline{BC} 와 만나는 점을 D 라 하자. $\overline{AB}=7\mathrm{cm}$, $\overline{CD}=2\mathrm{cm}$ 일 때, △ABD 의 넓이를 구하여라.



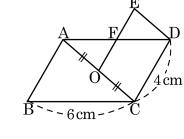
 $37cm^2$

 4 8cm^2 5 9cm^2

① 5cm^2 ② 6cm^2



47. 주어진 그림에서 점 O 는 \overline{AC} 의 중점이고, $\Box ABCD$, $\Box OCDE$ 는 모두 평행사변형이다. $\overline{AB}=4\mathrm{cm}$, $\overline{BC}=6\mathrm{cm}$ 일 때, $\overline{AF}+\overline{OF}$ 의 길이를 구하여라.



 $\triangle AOF \equiv \triangle DEF(ASA 합동)$ 이므로

②5cm

③ 6cm

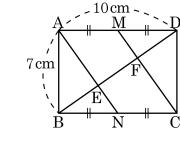
4 7cm

 \bigcirc 8cm

 \bigcirc 4cm

 $\overline{AF} = \frac{1}{2}\overline{AD}$ $\overline{OF} = \frac{1}{2}\overline{OE} = \frac{1}{2}\overline{CD}$ $\overline{AF} + \overline{OF} = \frac{1}{2}(\overline{BC} + \overline{OE}) = \frac{1}{2}(6+4) = 5(\text{cm})$

48. 다음 그림에서 $\square ABCD$ 는 직사각형이고, 점 M, N은 각각 \overline{AD} , \overline{BC} 의 중점이다. $\overline{AD}=10\,\mathrm{cm}$, $\overline{AB}=7\,\mathrm{cm}$ 일 때, $\square ENCF$ 의 넓이는?

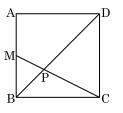


- ① $\frac{33}{2} \text{ cm}^2$ ② 17 cm^2 ④ 18 cm^2 ⑤ $\frac{37}{2} \text{ cm}^2$
- $35 \over 2 \text{ cm}^2$

 $\overline{\mathrm{MN}}$ 과 $\overline{\mathrm{EF}}$ 의 교점을 O 라 하면

 $\triangle MOF = \triangle ENO$ 이므로 $\Box \text{EFCN} = \triangle \text{MNC} = \triangle \text{ABN}$ $= \frac{1}{4} \Box \text{ABCD} = \frac{1}{4} \times 7 \times 10$

49. 다음 그림의 정사각형 ABCD 에서 점 M 은 AB 의 중점이다. △MBP = 15 cm² 일 때, □ABCD 의 넓이를 구하면?



① $120 \,\mathrm{cm}^2$ ④ $180 \,\mathrm{cm}^2$

② $140 \, \text{cm}^2$

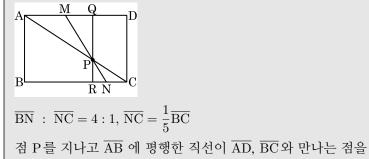
 $3 160 \,\mathrm{cm}^2$

 $\Im 200 \, \mathrm{cm}^2$

해설 BC 의

 \overline{BC} 의 중점 N 을 잡으면 $\triangle PMB \equiv \triangle PNB(SAS합동)$ $\triangle PCN = \triangle PNB = \triangle PMB = 15 (cm^2)$ $\therefore \Box ABCD = 4 \triangle MBC = 4 \times 15 \times 3 = 180 (cm^2)$

- ${f 50}$. 다음 그림의 직사각형 ABCD 에서 ${f AD}$ 를 2:3으로 나누는 점을 M, $\overline{\mathrm{BC}}$ 를 4:1로 나누는 점을 N , \overline{MN} 과 \overline{AC} 와의 교점을 P 라고 한다. △PNC 의 넓이는 □ABCD 의 넓이의 몇 배인가?



Q, R라고 하면 △APM∽△CPN $\overline{\rm AM} \ : \ \overline{\rm CN} = \overline{\rm AP} \ : \ \overline{\rm CP}$ $\triangle APQ \circlearrowleft \triangle CPR$

 $\overline{\mathrm{PQ}} \; : \; \overline{\mathrm{PR}} = \overline{\mathrm{AP}} \; : \; \overline{\mathrm{CP}}$

 $\overline{\rm AM} \ : \ \overline{\rm CN} = \overline{\rm PQ} \ : \ \overline{\rm PR} = 2:1$, $\overline{\rm PR} = \frac{1}{3}\overline{\rm AB}$

 $\triangle \text{PNC} = \frac{1}{2} \times \frac{1}{5} \times \frac{1}{3} \square \text{ABCD} = \frac{1}{30} \square \text{ABCD}$