1. 실수의 집합을 
$$R$$
이라 할 때, 함수  $f: R \to R$  가 다음과 같이 정해져 있다. 이 때, 일대일 대응인 것은?

① 
$$f(x) = ax + b \ (a \neq 0)$$
 ②  $f(x) = x^2$ 

③ 
$$f(x) = |x|$$
 ④  $f(x) = 2$  ⑤  $f(x) = \frac{1}{x}$ 

함수 f(x)가  $f(x) = x^2 + 2x - 3$  이고 임의의 실수 x에 대하여 g(x+1) =f(x-1)이 성립할 때, g(0)의 값을 구하여라.

\_\_\_\_

▶ 답:

③  $\{y|y = f(x)\} \subset \{y|y = g(x)\}$  ④  $\{y|y = f(x)\} \supset \{y|y = f(g)\}$ ⑤ f(x) + g(x) = 0

① 두 함수는 상등이다.

정의역이  $\{-1, 0, 1\}$ 인 두 함수  $f(x) = -|x|, g(x) = -x^2$  의 관계는?

② 두 함수는 상등이 아니다

집합  $X = \{-1, 1, 3\}$  에 대하여 X 에서 X 로의 함수 f(x) = -x + k 가 일대일 대응일 때, 상수 k 의 값은?

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

5. 다음 두 조건을 만족하는 함수  $f: X \to Y$  를 모두 고르면?

(i) 
$$f(x) = Y(단, x \in X)$$
  
(ii)  $x_1 \neq x_2$  이면  $f(x_1) \neq f(x_2)$  (단, $x, x_2 \in X$ )

$$A \cdot f(x) = x^{2} - 1$$

$$B \cdot f(x) = |x| + 2x$$

$$C \cdot f(x) = x^{3} + 1$$

$$D \cdot f(x) = \frac{2}{x - 1}$$

이차함수  $f(x) = x^2 - 4x$  가 있다. 함수  $f: X \to X$  가 일대일대응이 되 도록 하는 집합 X 를 구하면  $X = \{x \mid x \ge k\}$  이다. 이 때, k 의 값은?

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

**7.**  $f \circ f = f^2, f \circ f \circ f = f^3$ 과 같이 나타낼 때,  $f(x) = \frac{x}{x-1}$  이면  $f^3(2)$ 의 값은?

 $\bigcirc 1 -2 \qquad \bigcirc 2 -1$ 

- 두 함수 f(x) = -x + 4, g(x) = 3x + 2에 대하여  $(f \circ g)(k) = 2$ 를 만족하는 상수 k의 값은?
  - ① -1 ② 0 ③ 1 ④ 2 ⑤ 3

- 9. 두 함수 f(x) = x + k,  $g(x) = x^2 + 1$  에 대하여  $f \circ g = g \circ f$  가 성립하도록 상수 k 의 값을 정하여라.
- 장합이도국 장구 K 의 없고 장이되다.

\_\_\_\_

> 답:

① 
$$f(x) = x + 2$$
 ②  $f(x) = x - 2$  ③  $f(x) = 2x$   
④  $f(x) = 2x + 1$  ⑤  $f(x) = 2x + 2$ 

**10.** 함수 f(x)에 대하여  $f(\frac{x+1}{2}) = x+2$  일 때, f(x) 는 무엇인가?

**11.** 세 함수 f, g, h 가  $(g \circ f)(x) = x$ ,  $(h \circ f)(x) = -x + 3$  일 때,  $k \circ g = h$ 를 만족시키는 함수 k(x) 를 구하면?

4 k(x) = -x + 4 5 k(x) = -x + 5

① k(x) = -x + 1② k(x) = -x + 2 ③ k(x) = -x + 3 **12.** 다음 보기의 함수 y = f(x) 중  $f(x) = f^{-1}(x)$  를 만족하는 것을 <u>모두</u> 고르면?

보기

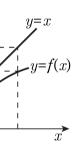
I. 
$$f(x) = x$$
II.  $f(x) = -x + 5$ 
III.  $f(x) = -\frac{3}{x-2} + 2$ 
IV.  $f(x) = \frac{x+4}{2x-1}$ 

② I.I.IV

⑤ I, II, III, IV

③ I. II. IV

① I.I.II


④ I, II, IV

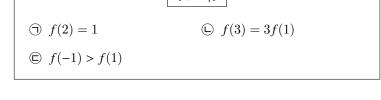
> 답:

**13.**  $f(x) = \begin{cases} x^2 + 1(x \ge 0) \\ x + 1(x < 0) \end{cases}$  의 역함수를 g(x)라 할 때, g(5) + g(0)의

함수 f(x) = 2x - 4 에 대하여 f(x) 의 역함수를  $f^{-1}(x)$  라 할 때. 함수 y = f(x) 와  $y = f^{-1}(x)$  의 그래프 및 y 축으로 둘러싸인 도형의 넓이는?

**15.** 아래의 그림은 두 함수 y = f(x), y = x 의 그래프이다.  $f^{-1}(b)$  의 값을 구하여라.




\_\_\_\_\_

**16.** 점 (2, 1)을 지나는 일차함수 y = f(x)의 그래프와  $y = f^{-1}(x)$ 의 그래프가 일치할 때, f(-2)의 값은? (4) 2

**17.** 집합  $X = \{-1, 1, -i, i\}$  에 대하여  $f: X \to Y$  인 함수  $f(x) = x^3$  의 치역을 구하여 모든 원소를 각각 제곱하여 모두 합하면? (2) -2

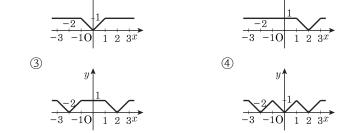
**18.** 일차 이하의 다항함수 y = f(x) 가 다음 세 조건을 만족한다.

$$I. \ f(0) \leq f(1)$$
 
$$II. \ f(2) \geq f(3)$$
 
$$III. \ f(1) = 1$$
 이 때, 다음 중 옳은 것을 모두 고르면?



4 (T), (E)

 $\bigcirc$ 


(2) (L)  $\bigcirc$   $\bigcirc$ ,  $\bigcirc$ ,  $\bigcirc$ 

3 ¬, L

**19.** 함수  $f_n(x)$ 가  $f_1(x) = \frac{x}{x+1}$ ,  $f_{n+1}(x) = (f_1 \circ f_n)(x)$   $(n = 1, 2, 3, \cdots)$ )으로 정의될 때,  $f_{28}\left(\frac{1}{2}\right)$ 의 값은?

① 
$$\frac{1}{20}$$
 ②  $\frac{1}{24}$  ③  $\frac{1}{30}$  ④  $\frac{1}{32}$  ⑤  $\frac{1}{40}$ 

20. 실수 전체의 집합에서 정의된 두 함수 
$$f, g$$
 가 각각  $f(x) = \begin{cases} 1 & (|x| \ge 1) \\ |x| & (|x| < 1) \end{cases}$  ,  $g(x) = x - 2$  일 때, 합성함수  $f \circ g$ 의 그래프는



(5)

**1.** 실수 전체의 집합 R에서 R로의 함수  $f = f : x \rightarrow a|x-1| + (2-a)x + a$ 와 같이 정의한다. 함수 f의 역함수가 존재할 때, 상수 a의 값의 범위 를 구하면?

① a < 1 ② a > 1 ③ 0 < a < 2 ④  $-\frac{1}{2} < a < 2$  ⑤  $0 < a < \frac{2}{3}$ 

**22.** 역함수가 존재하는 두 함수 f(x) = ax + b, g(x) = 4x + 1 에 대하여 (f ∘ (g ∘ f)<sup>-1</sup> ∘ g)(9) 의 값은?  $\bigcirc$  5 (4) 7

**23.** 함수 f(x) 는 모든 함수 h(x) 에 대하여  $(h \circ f \circ g)(x) = h(x)$  를 만족시키고, g(x) = 3x + 1일 때, f(7)의 값을 구하여라.

> 답: