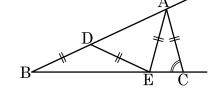
1. 다음 그림에서 $\overline{BD}=\overline{DE}=\overline{EA}=\overline{AC}$ 이고, $\angle C=\angle B+50$ °일 때, $\angle C$ 의 크기를 구하여라.



답:

➢ 정답 : 75_°

$\overline{\rm DB} = \overline{\rm DE}$

해설

 $\angle B = \angle x$ 라고 하면

 $\angle EDA = \angle x + \angle x = 2\angle x$ 이다.

ED = EA이므로 ∠EAD = ∠EDA

 $\therefore \angle AEC = \angle x + 2\angle x = 3\angle x$ 이다.

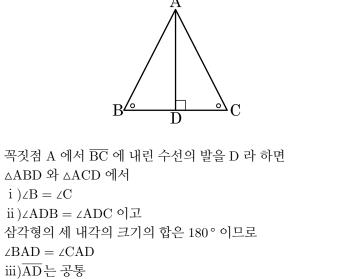
 $\overline{\mathrm{AE}} = \overline{\mathrm{AC}}$ 이므로

 $\angle ACE = \angle AEC = 3\angle x \circ] \overline{\mathcal{Q}},$

이때, ∠C = ∠B + 50°이므로

 $3\angle x = \angle x + 50^{\circ} \quad \therefore \angle x = 25^{\circ}$ $\therefore \angle C = 3\angle x = 3 \times 25^{\circ} = 75^{\circ}$

'두 밑각의 크기가 같은 삼각형은 이등변삼각형이다.' 를 보이기 위해 **2**. 사용된 합동의 조건은 무엇인지 써라.



 $i) \angle B = \angle C$ ii)∠ADB = ∠ADC 이고 삼각형의 세 내각의 크기의 합은 180°이므로 $\angle BAD = \angle CAD$ iii)AD는 공통 따라서 △ABD ≡ △ACD 이므로 [합동 ∴ △ABC 는 이등변삼각형이다.

▶ 답:

▷ 정답: ASA

꼭짓점 A 에서 \overline{BC} 에 내린 수선의 발을 D 라 하면

해설

 \triangle ABD 와 \triangle ACD 에서 $\angle \mathbf{B} = \angle \mathbf{C}$, $\angle ADB = (\angle ADC)$ 삼각형의 세 내각의 크기의 합은 (180) ° 이므로 $\angle BAD = (\angle CAD)$ $(\overline{\mathrm{AD}}\,)$ 는 공통

삼각형이다.

따라서 $\triangle ABD \equiv \triangle ACD$ (ASA 합동)이므로 $\triangle ABC$ 는 이등변

3. 다음은 이등변삼각형의 두 밑각의 크기가 같음을 증명하는 과정이다. ⑦~@ 중 알맞지 <u>않은</u> 것을 고르면?

【가정】△ABC 에서 (つ) = (ⓒ) 【결론】∠B = ∠C 【증명】△ABC 에서 꼭지각 A 의 이등분선이 밑변 BC 와 만나는 점을 D 라고 하면, Δ (©) 와 ΔACD 에서 (🕤) = (🕒) (가정) $\angle {\rm BAD} = \angle {\rm CAD}$ (🖹)는 공통 $\dot{\cdot}$ \triangle (\boxdot) \equiv $\triangle {\rm ACD}$ (\boxdot) $\therefore \angle B = \angle C$

② (L)AC (3) (E)ABD

 $\bigcirc \overline{AB}$

⑤@ASA 합동

【가정】 $\triangle ABC$ 에서 (\overline{AB}) = (\overline{AC}) 【결론】∠B = ∠C

【증명】AABC 에서 꼭지각 A 의 이등분선이 밑변 BC 와 만나는 점을 D 라고 하면,

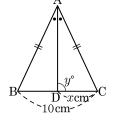
Δ (ABD)와 ΔACD 에서 $(\overline{AB}) = (\overline{AC})$ (가정)

 $\angle {\rm BAD} = \angle {\rm CAD}$ $(\ \overline{\mathrm{AD}}\)$ 는 공통

 \therefore \triangle (ABD) \equiv $\triangle ACD$ (SAS합동)

 $\therefore \, \angle \mathbf{B} = \angle \mathbf{C}$

- 다음 그림과 같이 $\overline{\mathrm{AB}}=\overline{\mathrm{AC}}$ 인 이등변삼각형 **4.** ABC에서 $\overline{\mathrm{AD}}$ 는 $\angle \mathrm{A}$ 의 이등분선일 때, y-x의 값은?
 - ① 80 **4** 95
- **2**85 **⑤** 100

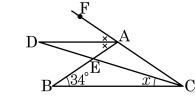


이등변삼각형에서 꼭지각의 이등분선은 밑변을 수직이등분하 $x = \frac{10}{2} = 5$ $\angle ADC = \angle y = 90$ °이다.

3 90

따라서 y - x = 90 - 5 = 85이다.

5. 다음 그림에서 $\overline{AB} = \overline{AC} = \overline{AD}$, $\angle FAD = \angle BAD$ 일 때, $\angle x$ 의 값과 같은 것은?



① ∠AED ④ ∠DAF

② ∠ACD ⑤ ∠BAC

③ ∠ABC

△ABC 는 이등변삼각형이므로

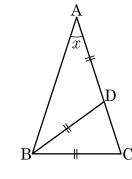
 $\angle BAC = 112^{\circ}$

 $\angle {\rm BAD}=\angle {\rm DAF}=\frac{1}{2}(180^{\circ}-112^{\circ})=34^{\circ}$ $\triangle {\rm ADC}$ 는 이등변삼각형이므로 $\angle ACD = \frac{1}{2}(180^{\circ} - 112^{\circ} - 34^{\circ}) = 17^{\circ}$

따라서 $\angle x = 34^{\circ} - 17^{\circ} = 17^{\circ}$ 이다.

 $\therefore \angle x = \angle ACD = \angle ADC$

다음 그림에서 $\triangle ABC$ 는 \overline{AB} = \overline{AC} 인 이등변삼각형이고 \overline{AD} =6. $\overline{\mathrm{BD}} = \overline{\mathrm{BC}}$ 일 때, $\angle x$ 의 크기는?



① 30° ② 32° ③ 34°

(4)36°

⑤ 38°

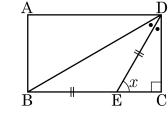
해설 $\triangle ABD$ 가 이등변삼각형이므로 $\angle A=\angle ABD=x^\circ$ 이고

 $\angle BDC = \angle x + \angle x = 2 \angle x$ 또한 $\triangle BCD$ 도 이등변삼각형이므로 $\angle BDC = \angle BCD = 2\angle x$ $\triangle ABC$ 가 $\overline{AB} = \overline{AC}$ 인 이등변삼각형이므로 $\angle ABC = \angle ACB = \angle BCD = 2\angle x$

따라서 ΔABC 의 내각의 합을 이용하면 $2x + 22x + 22x = 180^{\circ}$

 $\therefore \angle x = 36^{\circ}$

7. 다음 그림과 같은 직사각형 ABCD 에서 $\overline{BE} = \overline{DE}$, $\angle BDE = \angle CDE$ 일 때, $\angle x$ 의 크기는?



① 45° ② 50°

③ 55°

(4)60°

⑤ 65°

해설

 $\angle \mathrm{BDE} = \angle a$ 라고 하면 $\angle \mathrm{BDE} = \angle \mathrm{CDE} = \angle a$ 이고, $\angle x = 2\angle a$ △CDE 의 내각의 합을 이용하면

 $180^{\circ} = \angle CDE + \angle DEC + \angle ECD$ $= \angle a + 2\angle a + 90^{\circ}$

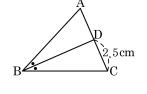
 $=3\angle a+90^{\circ}$

∴ ∠a = 30°

한편 $\angle x = 2 \angle a$ 이므로

 $\therefore \angle x = 60^{\circ}$

8. 다음 그림의 $\triangle ABC$ 는 $\overline{BA} = \overline{BC}$ 인 이등변 삼각형이다. \overline{AC} 의 길이를 구하면?



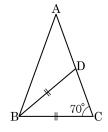
① 4.2cm ④ 4.8cm ② 4.4cm

③ 4.6cm

⑤5cm

이등변삼각형의 꼭지각의 이등분선은 밑변을 수직이등분하므로

 $\overline{BD}\bot\overline{AC}$, $\overline{CD}=\overline{AD}$ 따라서 $\overline{AC}=2.5+2.5=5(\mathrm{cm})$ 9. 다음 그림에서 $\overline{AB} = \overline{AC}$, $\overline{BC} = \overline{BD}$ 이고, ∠BCD = 70°일 때, ∠ABD 의 크기는?



①30° ② 32° ③ 34° ④ 36° ⑤ 38°

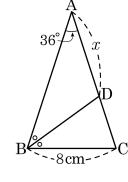
 ΔBCD 는 이등변삼각형이므로

 $\angle \mathrm{BDC} = 70\,^{\circ}$ $\angle \text{CBD} = 180^{\circ} - 2 \times 70^{\circ} = 40^{\circ}$

또 $\triangle ABC$ 는 이등변삼각형이므로 $\angle ABC = \angle ACB = 70^{\circ}$

따라서 $\angle ABD = 70$ ° -40° = 30°

10. 다음 그림에서 $\triangle ABC$ 는 $\overline{AB}=\overline{AC}$ 인 이등변삼각형이다. $\angle B$ 의 이등분선이 \overline{AC} 와 만나는 점을 D 라 할 때, x 의 길이를 구하여라.



 $\underline{\mathrm{cm}}$

정답: 8 cm

답:

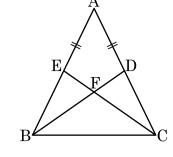
해설

36° 8cm 72° D 36° 8cm 72° C ∠A = 36° 이고, △ABC 가 이등변삼각형이므로 ∠B = ∠C = $\frac{1}{2}$ × $(180^\circ - 36^\circ)$ = 72° 이다.

되고, $\angle BCD = \angle BDC = 72^\circ$ 이므로 $\triangle BCD$ 도 두 내각의 크기가 같으므로, 이등변삼각형이다. 따라서 $\overline{BC} = \overline{BD} = \overline{AD} = 8\,\mathrm{cm}$ 이다.

 $\angle ABD = \angle CBD = 36^\circ$ 이므로 $\triangle ABD$ 는 두 내각의 크기가 같게

11. 다음 그림과 같은 이등변삼각형 $\overline{AD}=\overline{AE}$ 일 때, ΔFBC 는 어떤 삼각형인지 구하여라.

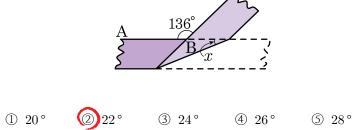


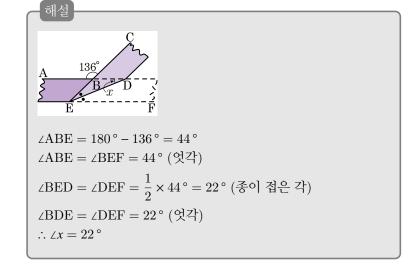
► 답:▷ 정답: 이등변삼각형

해설

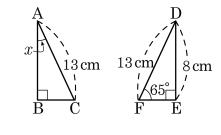
다음 그림에서 $\triangle ADB \equiv \triangle AEC$ (SAS 합동 $: \overline{AD} = \overline{AE}, \overline{AB} = \overline{AC}, \angle A \vdash \overline{AS}$)이므로 $\angle EBF = \angle DCF$ 이다.

12. 다음 그림과 같이 폭이 일정한 종이 테이프를 접었다. $\angle ABC = 136^{\circ}$ 일 때, $\angle x$ 의 크기는?





13. 합동인 두 직각삼각형 ABC, DEF가 다음 그림과 같을 때, $\angle x$ 의 크 기는?



① 65° ② 55° ③ 45°

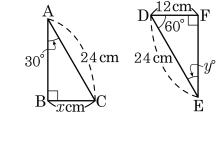
4 35°

 \triangle ABC, \triangle DEF는 서로 합동이다.

해설

 $\therefore \angle x = \angle \text{FDE} = 180^{\circ} - 90^{\circ} - 65^{\circ} = 25^{\circ}$

14. 두 직각삼각형 ABC, DEF 가 다음 그림과 같을 때, x+y 의 값은?



① 12

② 36

3 42

48

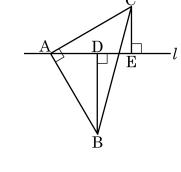
⑤ 60

 $\triangle ABC, \triangle EFD$ 는 RHA 합동 이므로

해설

 $\overline{\rm BC}=\overline{\rm FD}=12{\rm cm}=x{\rm cm}$, $\angle y=\angle{\rm CAB}=30^\circ$ $\therefore x + y = 12 + 30 = 42$

15. 다음 그림과 같이 $\angle A=90^\circ$ 인 직각이등변삼각형 ABC 가 있다. 두 점 B, C 에서 점 A 를 지나는 직선 l에 내린 수선의 발을 각각 D, E 라 하고, $\overline{\mathrm{BD}}=a,\;\overline{\mathrm{CE}}=b$ 라 할 때, $\overline{\mathrm{DE}}$ 의 길이를 $a,\;b$ 를 사용한 식으로 나타내어라.



▶ 답:

 Δ CAE 와 Δ ABD 에서

해설

 $\overline{\mathrm{AB}} = \overline{\mathrm{AC}}$, $\angle \mathrm{ADB} = \angle \mathrm{CEA}$, $\angle BAD = 90^{\circ} - \angle CAE = \angle ACE$ 이므로 $\triangle CAE \equiv \triangle ABD (RHA 합동)$ $\therefore \overline{AE} = \overline{BD} = a, \overline{AD} = b$

 $\therefore \overline{DE} = \overline{AE} - \overline{AD} = a - b$

16. $\triangle ABC$ 에서 $\angle A=90^\circ$ 이다. $\overline{DB}=4cm$, $\overline{\mathrm{EC}}=6\mathrm{cm}$ 일 때, $\Delta\mathrm{ABC}$ 의 넓이는 ?

 \bigcirc 20cm²

 \bigcirc 24cm²

 $\fbox{3}26 cm^2$

 $4 30 \, \mathrm{cm}^2$

 \bigcirc 50cm²

 $\triangle ADB \equiv \triangle CEA$ 이므로 $\overline{DB} = \overline{EA} = 4cm$, $\overline{DA} = \overline{EC} = 6cm$

해설

 $\square DBCE$ 의 넓이= $\frac{(4+6)\times 10}{2} = 50 (cm^2)$ 이므로

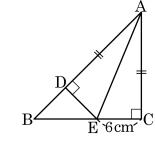
$$\begin{split} \triangle ABC &= \Box DBCE - \triangle ADB - \triangle CEA \\ &= 50 - 12 - 12 = 26(cm^2) \end{split}$$

- 17. 다음 그림의 △ABC 는 ĀC = BC 인 직각이등 변삼각형이다. 빗변 AB 위에 ĀC = ĀD 가 되게 점 D 를 잡고, 점 D 를 지나며 ĀB 에 수직인 직선과 BC 와의 교점을 E 라 할 때, EC = 6cm 이다. △BDE 의 넓이는?
 ① 12cm² ② 14cm² ③ 16cm²
- B E 6cm C
- 418cm^2
- $\odot 20 \text{cm}^2$

 $\triangle ADE \equiv \triangle ACE \text{ (RHS 합동) 이므로 } \overline{DE} = \overline{CE} = 6 \text{cm},$

해설

△BDE 는 직각이등변삼각형이므로 $\overline{\rm DE}=\overline{\rm DB}=6{\rm cm}$ ∴ △BDE $=\frac{6\times 6}{2}=18({\rm cm}^2)$ 18. 다음 직각삼각형 ABC 에서 $\overline{AC}=\overline{AD}$ 인 점 D 를 잡고 $\overline{AB}\bot\overline{DE}$ 인 점 E를 잡았다. $\overline{\mathrm{EC}}=6\mathrm{cm}$ 일 때, $\overline{\mathrm{DE}}$ 의 길이를 구하여라.



 $\underline{\mathrm{cm}}$

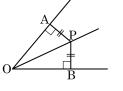
▷ 정답: 6cm

▶ 답:

 \triangle ACE $\equiv \triangle$ ADE(RHS합동) 이다. 그러므로 $\overline{\mathrm{DE}} = \overline{\mathrm{EC}} = 6(\mathrm{cm})$

해설

19. 다음의 도형에서 $\overline{PA} = \overline{PB}$ 이면 점 P는 $\angle AOB$ 의 이등분선 위에 위치함을 증명하려고 한다. 증명의 과정 중 옳지 <u>않은</u> 것을 골라라.



(증명) △PAO

ΔPAO와 ΔPBO에서 ⑤ ∠PAO = ∠PBO = 90°이고, ⑥ PA = PB이고, OP는 공통이므로 ΔPAO ≡ ΔPBO (⑥ RHA 합동)이다. 그러므로 ⑥ ∠POA = ∠POB이다. 따라서 ⑥ 점 P는 ∠AOB의 이등분선 위에 위치한다.

▷ 정답: □

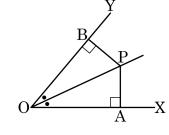
▶ 답:

 $\triangle PAO$ 와 $\triangle PBO$ 에서 \bigcirc $\angle PAO = \angle PBO = 90$ °이고, \bigcirc $\overline{PA} =$

해설

PB (가정에 있음)이고, OP는 공통이므로 ΔPAO ≡ ΔPBO (© RHA 합동 ⇒ RHS 합동)이다. 그러므로 @ ∠POA = ∠POB이다. 마라서 @ 점 P는 ∠AOB의 이등분선 위에 위치한다.

20. 다음은 각의 이등분선 위의 한 점에서 각의 두변에 이르는 거리는 같음을 보이는 과정이다. 다음 빈칸에 들어갈 말로 <u>틀린</u> 것은?



보기 -

∠XOY 의 이등분선 위의 한 점 P를 잡으면 $\triangle PAO$ 와 $\triangle PBO$ 에 있어서 $\angle PAO = (\forall B) = 90^{\circ} \cdots \bigcirc$ 가정에서∠POA = ((나)) · · · · □ $\overline{\mathrm{OP}}(\ \square) \cdots \square$ ᄀ, ℂ, ⓒ에 의해 $\triangle PAO \equiv \triangle PBO$ (etata 합동) $\therefore \overline{\mathrm{PA}} = (\ (\square) \)$

③ (다) 빗변(공통변)

① (フト)∠PBO

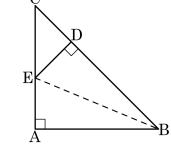
④(라) RHS

② (나) ∠POB

- ⑤ (마) PB

∠XOY 의 이등분선 위의 한 점 P 를 잡으면 Δ PAO 와 Δ PBO 에 있어서 $\angle PAO = (\angle PBO) = 90^{\circ} \cdots \bigcirc$ $\angle POA = (\angle POB) \cdots \bigcirc$ $\overline{\mathrm{OP}} = ($ 빗변(공통변)) \cdots © ⊙, ७, ☞에 의해 $\triangle \mathrm{PAO} \equiv \triangle \mathrm{PBO} \; (\mathrm{RHA} \; \text{합동} \;)$ $\therefore \overline{\mathrm{PA}} = (\overline{\mathrm{PB}})$

21. 다음 그림의 $\triangle ABC$ 는 $\angle A=90^\circ$, $\overline{AB}=\overline{AC}$ 인 직각이등변삼각형이다. $\overline{BA}=\overline{BD},\ \overline{ED}=\overline{DC}$ 일 때, 다음 중 옳지 <u>않은</u> 것은?



 $\overline{\text{3}}\overline{\text{AE}} = \overline{\text{EC}}$

① $\triangle ABE \equiv \triangle DBE$

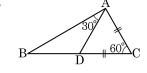
- ② $\angle DBE = \angle ABE$ ④ $\overline{AE} = \overline{DE} = \overline{DC}$

① AABE와 ADBE는

해설

- BA = BD, BE는 공통, ∠BAE = ∠BDE = 90°
 - ∴ △ABE ≡ △DBE(SAS 합동) ② △ABE ≡ △DBE 이므로 ∠DBE = ∠ABE 이다.
- ④ $\triangle CDE$ 는 직각이등변삼각형이므로 $\overline{DE} = \overline{DC}$ 또 $\triangle ABE = \triangle DBE(SAS합동)$ 이므로 $\overline{AE} = \overline{DE}$
- ∴ $\overline{AE} = \overline{DE} = \overline{DC}$ ⑤ $\triangle ABC$ 는 직각이등변삼각형이므로 ∠C = 45° $\triangle CDE$ 에서 ∠DEC = 180° - (90° + 45°) = 45°
- ∴ ∠DEC = ∠DCE

 ${f 22}$. 그림과 같은 $\triangle ABC$ 에서 $\overline{AC}=\overline{CD}$ 일 때, <u>틀린</u> 것을 모두 고르면?



- \bigcirc $\angle ADC = 50^{\circ}$ © ∠A = 90°
- \bigcirc $\angle ABD = 40^{\circ}$
- ② △ABD 는 이등변삼각형 ◎ \overline{AC} 가 5cm 일 때, \overline{BD} 는 5cm 이다.

④ ⋽, ▣

 \bigcirc , \bigcirc

2 🗅, 🖻 (5) (E), (E) ③つ, ©

 $\triangle \mathrm{ADC}$ 에서 $\overline{\mathrm{AC}} = \overline{\mathrm{CD}}$ 이므로

해설

 $\angle CAD = \angle CDA = \frac{1}{2} \times (180^{\circ} - 60^{\circ}) = 60^{\circ}$ 따라서 $\triangle ADC$ 는 정삼각형이다.

 $\angle \mathrm{BAC} = 30\,^{\circ} + 60\,^{\circ} = 90\,^{\circ}$

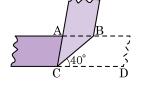
따라서 $\triangle ABC$ 에서 $\angle ABC = \angle ABD = 30$ ° 이다.

 $\angle {\rm BAD} = \angle {\rm ABD} = 30\,^{\circ}$ 이므로 $\triangle {\rm ABD}$ 는 이등변삼각형 $\triangle ADC$ 는 정삼각형이고 $\triangle ABD$ 는 이등변삼각형이므로 \overline{AC} =

 $\overline{\mathrm{CD}} = \overline{\mathrm{AD}} = \overline{\mathrm{BD}}$

따라서 \overline{AC} 가 $5\mathrm{cm}$ 일 때, \overline{BD} 는 $5\mathrm{cm}$ 이다.

23. 직사각형 모양의 종이를 다음 그림과 같이 접었을 때, ∠BCD = 40°이다. 이때, ∠BAC 의 크기를 구하여라.



➢ 정답: 100°

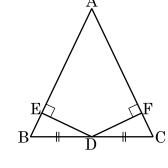
▶ 답:

해설

∠BCD = ∠BCA = 40° ∠BCD = ∠ABC = 40° (엇각)

 $\angle BAC = 180^{\circ} - 80^{\circ} = 100^{\circ}$

24. 다음 그림의 $\triangle ABC$ 에서 변 BC의 중점을 D라 하자. 점 D에서 변 AB, AC에 내린 수선의 발을 각각 E, F라 하고, $\overline{DE}=\overline{DF}$ 일 때, 다음 중 옳지 않은 것은?



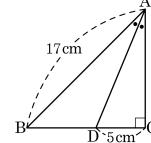
② ∠EBD = ∠FCD

① $\overline{\mathrm{EB}} = \overline{\mathrm{FC}}$

- ③ △ABC 는 이등변삼각형
- ④ ΔEBD ≡ ΔFCD (RHA 합동)
- ⑤ △AED ≡ △AFD (RHS 합동)

④ \triangle EBD \equiv \triangle FCD (RHS 합동)

- ${f 25}$. 다음 그림에서 ${\it \angle C}=90^\circ$ 이고, $\overline{
 m AC}=\overline{
 m BC}$ 인 직각이등변삼각형 ABC 에서 $\angle A$ 의 이등분선이 \overline{BC} 와 만나는 점을 D 라 하고, \overline{AB} = 17cm, $\overline{DC} = 5$ cm 일 때, $\triangle ABD$ 와 $\triangle ADC$ 의 넓이의 차는?



- ① $\frac{11}{2}$ cm² ② $\frac{25}{2}$ cm² ③ $\frac{75}{2}$ cm² ④ 33 cm² ⑤ 51cm²

점 D 에서 \overline{AB} 에 내린 수선과의 교점을 H 라 하면, $\triangle AHD$ =

△ACD(RHA합동)

 ΔBHD 는 직각이등변삼각형이므로 $\overline{DC}=\overline{DH}=\overline{BH}=5(cm)$

 $\frac{1}{2} = 30 (\mathrm{cm}^2)$ 이다.

 $\triangle ABD$ 와 $\triangle ADC$ 의 넓이의 차는 $\frac{85}{2}-30=\frac{25}{2}(\mathrm{cm}^2)$ 이다.