1. 다음 표의 수 중 근호를 사용하지 않고 나타낼 수 있는 수들을 찾아 색칠한 후 이 수들이 나타내는 수를 아래쪽에 색칠하였을 때 두 그림이 나타내는 수를 말하여라.

√ 0.4	1	$\sqrt{2}$	8	√	15	1	/0.01	√-	16
$\sqrt{18}$,	$\sqrt{1}$	3	$\sqrt{1}$	100		$\sqrt{25}$	√ <u></u>	16
$\sqrt{-0}$.	9	$\sqrt{0}$)	$\sqrt{1}$	120		$\sqrt{36}$	$\sqrt{2}$	20
$\sqrt{49}$)	\sqrt{g})	√	81		$\sqrt{64}$	$\sqrt{0}$.	08
$\sqrt{-30}$	6	$\sqrt{3}$	3	√.	- 9		$\sqrt{4}$		8
						_			
-5		6		3	0		25		

-10	-0.3	16	8	11
-1	7	9	0.1	-4
15	10	-10	-6	-13
-7	2	0.3	5	12

▷ 정답: 42

∨ 0⊟

▶ 답:

해설 $\sqrt{0.4}$ $\sqrt{28}$ $\sqrt{0.01}$ $\sqrt{15}$ $\sqrt{-16}$ $\sqrt{13}$ $\sqrt{100}$ $\sqrt{18}$ $\sqrt{25}$ $\sqrt{-16}$ $\sqrt{0}$ $\sqrt{-0.9}$ $\sqrt{120}$ $\sqrt{36}$ $\sqrt{20}$ $\sqrt{49}$ $\sqrt{9}$ $\sqrt{81}$ $\sqrt{64}$ $\sqrt{0.09}$ $\sqrt{-9}$ $\sqrt{-36}$ $\sqrt{3}$ $\sqrt{4}$ $\sqrt{8}$ -5 6 0 25 -10 -0.3 16 8 11 -1 0.1 -4 7 9 15 10 -10-6-13-7 2 0.3 5 12

2. $\sqrt{\sqrt{81}} - \sqrt{0.09} + \sqrt{(0.9)^2} - \sqrt{\frac{1}{16}}$ 을 계산하면?

① 3.05 ② 3.15 ③ 3.25 ④ 3.35 ⑤ 3.45

해설 (준식) = 3 - 0.3 + 0.9 - $\frac{1}{4}$ = 3.35 **3.** 다음 중 계산 한 값이 옳은 것은?

①
$$\sqrt{3^2} - \sqrt{(-5)^2} + \sqrt{2^2} = 10$$

② $\sqrt{(-2)^2} - (-\sqrt{3})^2 - \sqrt{5^2} = 0$

$$\sqrt{\left(\frac{2}{5}\right)^2} + \sqrt{\frac{9}{25}} - \sqrt{\left(\frac{6}{5}\right)^2} =$$

$$\sqrt{\left(\frac{2}{5}\right)^2 + \sqrt{\frac{9}{25}} - \sqrt{\left(\frac{6}{5}\right)^2} = -\frac{1}{5}$$

$$\sqrt{\left(\frac{2}{5}\right)^2 + \sqrt{\left(\frac{1}{2}\right)^2} + \sqrt{\left(-\frac{1}{2}\right)^2} = 0$$

①
$$\sqrt{3^2} - \sqrt{(-5)^2} + \sqrt{2^2} = 3 - 5 + 2 = 0$$

② $\sqrt{(-2)^2} - (-\sqrt{3})^2 - \sqrt{5^2} = 2 - 3 - 5 = -6$

$$4 \sqrt{2^2} \times \sqrt{\left(\frac{1}{2}\right)^2} + \sqrt{\left(-\frac{1}{2}\right)^2} = 2 \times \frac{1}{2} + \frac{1}{2} = \frac{3}{2}$$

① 1 ② 3 ③ 5 ④ 7 ⑤ 9

4. $\sqrt{121} - \sqrt{(-6)^2}$ 을 계산하여라.

해서

11 - 6 = 5

5. $\sqrt{64} + \sqrt{(-7)^2}$ 을 계산하여라.

■ 답:

➢ 정답: 15

 $\sqrt{64} + \sqrt{(-7)^2} = \sqrt{64} + \sqrt{49} = 8 + 7 = 15$

6.
$$\sqrt{(2-\sqrt{5})^2} + \sqrt{(2+\sqrt{5})^2}$$
 의 식을 간단히 하면?

① $\sqrt{5}$ ② 0 ③ $2\sqrt{5}$

4 4 5 $2\sqrt{5}+4$

 $\sqrt{5} > 2$ 이므로 $\sqrt{(2-\sqrt{5})^2} + \sqrt{(2+\sqrt{5})^2} = -2 + \sqrt{5} + 2 + \sqrt{5}$ $=2\sqrt{5}$

- 7. $2 \le \sqrt{x} < 3$ 을 만족하는 자연수 x의 개수를 구하여라.
 - <u>개</u>

정답: 5개

 $2 \le \sqrt{x} < 3$ 는 $\sqrt{4} \le \sqrt{x} < \sqrt{9}$ 이므로 $4 \le x < 9$ 이다. 따라서

자연수 x는 4, 5, 6, 7, 8로 5개이다.

8.
$$\sqrt{42} \div \sqrt{7} \div \sqrt{\frac{5}{3}} = n\sqrt{10}$$
 일 때, n 의 값을 구하여라.

▶ 답:

ightharpoonup 정답: $n=rac{3}{5}$

해결
$$\sqrt{42} \div \sqrt{7} \div \sqrt{\frac{5}{3}} = \sqrt{42} \times \frac{1}{\sqrt{7}} \times \frac{\sqrt{3}}{\sqrt{5}} = \frac{3}{5}\sqrt{10}$$
$$\frac{3}{5}\sqrt{10} = n\sqrt{10}$$
이므로 따라서 $n = \frac{3}{5}$ 이다.

다음 중에서 제곱근을 구할 수 없는 수는 모두 몇 개인지 구하여라. 9.

보기 -1, 0, -4, $-(-2)^2$, $(-\sqrt{3})^2$, $\frac{1}{4}$

개 답: ▷ 정답: 2<u>개</u>

해설

 $-(-2)^2 = -4$ 이므로 음수의 제곱근은 구할 수 없다.

10. a > 0 일 때, $\sqrt{(-2a)^2} - \sqrt{9a^2}$ 을 간단히 하면?

① -11a ② -7a ③ -5a ④ -a ⑤ a

해설 $\sqrt{4a^2} - \sqrt{9a^2} = 2a - 3a = -a$

11. $\sqrt{\frac{24}{x}}$ 가 정수가 될 때, 가장 작은 정수 x 값을 구하여라.

답:

▷ 정답: 6

 $\sqrt{\frac{24}{x}} = \sqrt{\frac{2^3 \times 3}{x}}$ 에서 분자의 소인수의 지수가 모두 짝수가 되어야 하므로 $x = 2 \times 3 = 6$ 이다.

12. 다음 보기에서 $\sqrt{18-x}$ 가 정수가 되게 하는 자연수 x 의 값으로 옳지 않은 것을 모두 고르면?

④ □, □, □ ⑤ □, □, □

 $\sqrt{18-x}$ 가 정수가 되려면 18-x 가 제곱수가 되어야 한다.

해설

© 18 – 12 = 6 이므로 제곱수가 아니다. ② 18 – 15 = 3 이므로 제곱수가 아니다.

□ 18 - 16 = 2 이므로 제곱수가 아니다.

13. 다음 수 중에서 가장 작은 수는?

① $2\sqrt{3}$ ② 3 ③ $\frac{\sqrt{7}}{2}$ ④ $\sqrt{11}$ ⑤ $\sqrt{\frac{7}{3}}$

①
$$2\sqrt{3} = \sqrt{12}$$

② $3 = \sqrt{9}$
③ $\frac{\sqrt{7}}{2} = \sqrt{\frac{7}{4}}$
④ $\sqrt{11}$
⑤ $\sqrt{\frac{7}{3}}$
 $\therefore \frac{\sqrt{7}}{2} < \sqrt{\frac{7}{3}} < 3 < \sqrt{11} < 2\sqrt{3}$

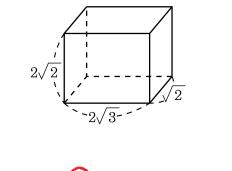
14.
$$\sqrt{(\sqrt{7}-3)^2} - \sqrt{(3-\sqrt{7})^2}$$
 을 간단히 하면?

① 0 ② $6-2\sqrt{7}$ ③ 6 ④ $\sqrt{6}$ ⑤ $3+\sqrt{7}$

지원 $\sqrt{7} < 3 = \sqrt{9}$ 이므로 $\sqrt{(\sqrt{7} - 3)^2} - \sqrt{(3 - \sqrt{7})^2}$ $= |\sqrt{7} - 3| - |3 - \sqrt{7}|$ $= -(\sqrt{7} - 3) - (3 - \sqrt{7})$ $= -\sqrt{7} + 3 - 3 + \sqrt{7} = 0$

15. $\sqrt{3.6} \times \sqrt{4.9}$ 를 계산하여라.

답:


▷ 정답: 4.2

$$\sqrt{3.6} \times \sqrt{4.9} = \sqrt{3.6 \times 4.9} = \sqrt{\frac{36}{10} \times \frac{49}{10}}$$

$$= \sqrt{\frac{6^2 \times 7^2}{10^2}} = \sqrt{\frac{(6 \times 7)^2}{10^2}}$$

$$= \frac{42}{10} = 4.2$$

16. 다음 그림과 같은 직육면체의 부피를 \sqrt{x} 의 꼴로 나타냈을 때, x의 값은?

① 190 ② 191

3192

4 194 **5** 196

직육면체의 부피는 (가로)×(세로)×(높이) 이므로 $2\sqrt{3} \times \sqrt{2} \times 2\sqrt{2} = 8\sqrt{3} = \sqrt{192}$ 이다. 따라서 x의 값은 192 이다.

17. A, B 가 다음과 같을 때, A + B 의 값은?

$$A = \sqrt{196} \div \sqrt{(-2)^2} - \sqrt{(-3)^4} \times \left(-\sqrt{2}\right)^2$$

$$B = \sqrt{144} \times \sqrt{\frac{25}{81}} \div \left(-\sqrt{\frac{4}{9}}\right)$$

① -21 ② -1 ③ 0 ④ 1 ⑤ 21

$$A = 14 \div 2 - 3^{2} \times 2 = 7 - 18 = -11$$

$$B = 12 \times \frac{5}{9} \div \left(-\frac{2}{3}\right) = 12 \times \frac{5}{9} \times \left(-\frac{3}{2}\right) = -10$$

$$\therefore A + B = -11 + (-10) = -21$$

- **18.** 다음 3 < x < 5 일 때, 옳지 <u>않은</u> 것은?
- ① $\sqrt{2} < x$ ② $\sqrt{3} < x$ ③ $x < 2\sqrt{2}$
- ① $x < 4\sqrt{2}$ ⑤ $x < 5\sqrt{3}$

 $2\sqrt{2} < 3 < x$ 이므로 ③은 옳지 않다.

19. $\sqrt{0.002} = A\sqrt{5}$ 일 때, A 를 구하여라.

▶ 답:

ightharpoonup 정답: $A=rac{1}{50}$

해설
$$\sqrt{0.002} = \sqrt{\frac{20}{10000}} = \frac{\sqrt{20}}{100} = \frac{2\sqrt{5}}{100} = \frac{\sqrt{5}}{50}$$
$$\therefore A = \frac{1}{50}$$

20. $2\sqrt{133} \div \frac{1}{\sqrt{7}} \div \frac{1}{\sqrt{19}}$ 를 간단히 하여라.

답:

▷ 정답: 266

 $2\sqrt{133} \div \frac{1}{\sqrt{7}} \div \frac{1}{\sqrt{19}} = 2\sqrt{133} \times \sqrt{7} \times \sqrt{19}$ $= 2\sqrt{133 \times 7 \times 19}$ $= 2\sqrt{133^2}$ = 266

- **21.** $(-9)^2$ 의 양의 제곱근을 $a, \sqrt{625}$ 의 음의 제곱근을 b 라고 할 때, a+b 의 값을 구하여라.
 - 답:▷ 정답: a+b=4

 $(-9)^2 = 81 = (\pm 9)^2$

해설

 $\therefore \ a = 9$ $\sqrt{625} = 25 = (\pm 5)^2$

 $\therefore b = -5$

 $\therefore a+b=9-5=4$

22. 제곱근 $\frac{9}{16}$ 를 $\frac{b}{a}$ 라고 할 때, a+b 의 값은? (단, a, b 는 서로소이다.)

① -1 ② 1 ③ 3 ④7 ⑤ 9

제곱근 $\frac{9}{16}$ 는 $\frac{3}{4}$ 이므로, a=4, b=3 $\therefore a+b=4+3=7$

23. 제곱근 $81 \, \oplus A$, $81 \, \cap$ 음의 제곱근을 B 라고 할 때, A+B 의 값을 구하여라.

▶ 답:

ightharpoonup 정답: A+B=0

(제곱근 81)= $\sqrt{81} = 9$, A = 9 이고,

해설

(81 의 음의 제곱근)= $-\sqrt{81} = -9$, B = -9 이다. 따라서 A + B = 9 + (-9) = 0 이다. 24. 다음 보기 중 제곱근을 바르게 구한 것을 모두 고르면?

③ 36 의 음의 제곱근 → -6
 ⑥ 5 의 제곱근 → ± √5
 ⑥ (-3)² 의 제곱근 → 3
 ⑧ √16 의 제곱근 → ±4

해설

② √16 의 제곱근 → 4 의 제곱근 → ±2

 \bigcirc $(-3)^2$ 의 제곱근 \rightarrow 9 의 제곱근 \rightarrow ±3

25. 9 의 제곱근과 25 의 제곱근의 합의 최솟값을 구하여라.

답:

▷ 정답: -8

에설 9 의 제곱근: −3, 3

25 의 제곱근: -5, 5 (-3) + (-5) = -8

26. a < 0 일 때, 다음 보기 중 옳은 것을 모두 고르면?

③ ∟, ⊜

④ □, ⊜, □ ⑤ □, ⊜

해설 $a < 0 \circ | 므로$ ① $-\sqrt{a^2} = -(-a) = a$ ② $\sqrt{(3a)^2} = -3a$ ② $10\sqrt{100a^2} = 10\sqrt{(10a)^2}$ $= 10 \times (-10a) = -100a$

- ① $\frac{1}{5}$ ② $\frac{2}{5}$ ③ $\frac{8}{5}$ ④ $\frac{12}{5}$ ⑤ $\frac{16}{5}$

지원 $\sqrt{0.96} = \sqrt{\frac{96}{100}} = \sqrt{\frac{4^2 \times 6}{10^2}} = \frac{4}{10}\sqrt{6} = \frac{2}{5}\sqrt{6}$ $\therefore x = \frac{2}{5}$