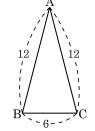

- 1. 다음 그림에서 $\angle C = 90$ ° 가 되기 위한 x 의 값을 구하 ① $\frac{2}{3}$ ② $\frac{5}{6}$ ③ 1 $\boxed{4}{6}$ ⑤ $\frac{4}{3}$

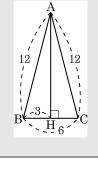
$$x+3$$
 이 빗변이므로 $(x+3)^2=x^2+4^2$ 이 성립한다.
$$\therefore \ x=\frac{7}{6}$$

$$\therefore x =$$

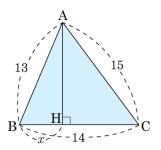

2. 대각선의 길이가 12 인 정사각형의 넓이는?

① 36 ② 56 ③ 64 ④ 72 ⑤ 144

정사각형 한 변을 a 라 하면 대각선은 $\sqrt{2}a$ 이므로


 $\sqrt{2}a=12,\,a=rac{12\,\sqrt{2}}{2}=6\,\sqrt{2}$ 따라서, 정사각형의 넓이는 $6\,\sqrt{2}\times6\,\sqrt{2}=72$ 이다.

- **3.** 다음 그림과 같은 △ABC의 넓이는?
 - ① $12\sqrt{3}$
- ② $15\sqrt{3}$
- $\boxed{3}9\sqrt{15}$
- **4** 36
- ⑤ $10\sqrt{15}$



해설

점 A 에서 내린 수선의 발을 H라 하면 $\overline{\rm AH}=\sqrt{12^2-3^2}=3\sqrt{15}$ 따라서 넓이는 $\frac{1}{2}\times 6\times 3\sqrt{15}=9\sqrt{15}$ 이다.

4. 다음 그림의 삼각형 ABC 에서 \overline{AB}^2 – \overline{BH}^2 = \overline{AC}^2 – \overline{CH}^2 임을 이용하여 x 의 값을 구하여라.

 답:

 ▷ 정답:
 5

 $13^2 - x^2 = 15^2 - (14 - x)^2 \implies \therefore x = 5$

- 다음 그림의 $\overline{AB} = 4$, $\angle B = 45$ °, $\angle C =$ **5.** $30\,^{\circ}$ 인 $\triangle ABC$ 에서 꼭짓점 A 에서 \overline{BC} 에 내린 수선의 발을 H 라고 할 때, $\overline{\mathrm{BC}}$ 의 길이는?

 - ① $4\sqrt{2}$
- ② $4\sqrt{6}$ ⑤ $8\sqrt{2}$
- $3 2\sqrt{2} + \frac{2\sqrt{6}}{3}$
- 4 $2\sqrt{2} + 2\sqrt{6}$

해설

- $\begin{aligned} 1: \ \sqrt{2} &= \overline{BH}: 4, \ \overline{BH} = 2 \sqrt{2} = \overline{AH} \\ 1: \ \sqrt{3} &= 2 \sqrt{2}: \overline{CH}, \ \overline{CH} = 2 \sqrt{6} \end{aligned}$ $\therefore \overline{BC} = \overline{BH} + \overline{CH} = 2\sqrt{2} + 2\sqrt{6}$

6. 좌표평면 위의 두 점 $A(-1,\ 1),\ B(x,\ 5)$ 사이의 거리가 $4\sqrt{2}$ 일 때, x 의 값을 구하여라.

▶ 답:

▶ 답:

> 정답: *x* = 3

해설

➢ 정답: x = −5

 $\overline{AB} = \sqrt{(x+1)^2 + (5-1)^2} = 4\sqrt{2}$ $(x+1)^2 + 16 = 32$

 $(x+1)^2 = 16$ $x+1 = \pm 4$

 $x = -1 \pm 4$ 따라서 x = 3 또는 x = -5 이다.

7. 다음 그림의 정육면체의 한 변의 길이를 구하여

> 정답: 8√3 cm

 $\underline{\mathrm{cm}}$

▶ 답:

한 변의 길이를 a 라고 하면 $\sqrt{3}a = 24$ $\therefore a = \frac{24}{\sqrt{3}} = \frac{24\sqrt{3}}{3} = 8\sqrt{3} \text{ (cm)}$

 $\sin A = 0.6$ 일 때, $\cos A + \tan A$ 의 값을 구하면? (단, 0 ° $\leq A \leq 90$ ° 8.

① 0.5 ② 0.6 ③ 0.7 ④ $\frac{9}{10}$ ⑤ $\frac{31}{20}$

 $\sin A = 0.6 = \frac{3}{5}$ 이므로 $\cos A = \frac{4}{5}, \ \tan A = \frac{3}{4} \ \text{이다.}$ 따라서 $\cos A + \tan A = \frac{4}{5} + \frac{3}{4} = \frac{31}{20} \ \text{이다.}$

9. 다음 보기에서 옳은 것을 모두 골라 그 기호를 써라.

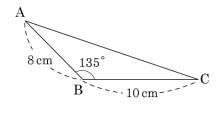
- $\bigcirc \sin 30^{\circ} = \cos 30^{\circ} \times \tan 30^{\circ}$
- $() \tan 30 ° = \frac{1}{\tan 60 °}$

답:

▷ 정답: 心

▷ 정답: ②

답:


 (좌변) $=\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^2=\frac{1}{2}$ \bigcirc (좌변) = $\frac{1}{2}$, (우변) = $\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{3}} = \frac{1}{2}$

© (좌변) = $\frac{1}{2} + \frac{\sqrt{3}}{2}$, (우변) = 1 © (좌변) = $\frac{\sqrt{3}}{3}$, (우변) = $\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$

10. 다음 삼각비의 값 중 가장 작은 값은?

① sin 25° ② cos 0° ③ cos 10°
④ tan 45° ⑤ tan 60°

해설 ① $\sin 25^\circ$ 와 ③ $\cos 10^\circ$ $0^\circ \le x < 45^\circ$ 일 때, $\sin x < \cos x$ 따라서 $\sin 25^\circ < \cos 10^\circ < 1$ ② $\cos 0^\circ = 1$ ④ $\tan 45^\circ = 1$ ⑤ $\tan 60^\circ = \sqrt{3}$ 따라서 가장 작은 값은 ① $\sin 25^\circ$ 11. 다음 삼각형의 넓이를 구하여라.

▶ 답:
 > 정답:
 20 √2 cm²

(템이) = $\frac{1}{2} \times 8 \times 10 \times \sin(180^{\circ} - 135^{\circ})$ = $\frac{1}{2} \times 8 \times 10 \times \sin 45^{\circ}$ = $\frac{1}{2} \times 8 \times 10 \times \frac{\sqrt{2}}{2} = 20 \sqrt{2} \text{ (cm}^2\text{)}$

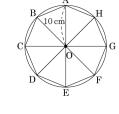
 $\underline{\mathrm{cm}^2}$

12. 다음 그림과 같이 두 대각선이 이루는 각의 크기가 45° 인 등변사다리 꼴 ABCD 의 넓이가 $18\sqrt{2} \text{cm}^2$ 일 때, $\overline{\text{AC}}$ 의 길이를 구하여라.

B 45°C

 ▶ 답:
 cm

 ▷ 정답:
 6√2 cm

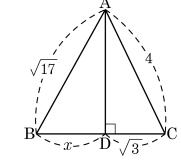

대각선 $\overline{AC} = \overline{BD} = x$ 라면

 $x \times x \times \frac{1}{2} \times \sin 45^{\circ} = 18\sqrt{2}$

$$x^{2} \times \frac{1}{2} \times \frac{\sqrt{2}}{2} = 18\sqrt{2}$$

$$x^{2} = 72 \qquad \therefore \quad x = 6\sqrt{2} \text{ (cm)}$$

13. 다음 그림과 같이 반지름의 길이가 $10 \mathrm{cm}$ 인 원에 내접하는 정팔각형의 넓이를 구하여라.

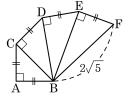

- $4 202 \sqrt{2} \text{ cm}^2$
 - ⑤ $202\sqrt{3}\,\mathrm{cm}^2$
- ② $200 \sqrt{2} \text{ cm}^2$ 3 $200 \sqrt{3} \text{ cm}^2$

$360^{\circ} \div 8 = 45^{\circ}$

 $(\triangle AOH$ 의 넓이)= $\frac{1}{2} \times 10 \times 10 \times \sin 45$ °이므로

(정팔각형의 넓이) = $\frac{1}{2} \times 10 \times 10 \times \frac{\sqrt{2}}{2} \times 8$ = $200 \sqrt{2} \text{ (cm}^2\text{)}$

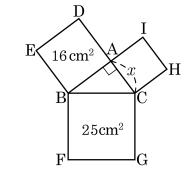
14. 다음 그림의 삼각형 ABC 에서 x 의 값을 구하여라.


▷ 정답: 2

▶ 답:

$$\overline{AD} = \sqrt{4^2 - (\sqrt{3})^2} = \sqrt{16 - 3} = \sqrt{13}$$

$$\therefore x = \sqrt{(\sqrt{17})^2 - (\sqrt{13})^2} = \sqrt{17 - 13} = 2$$

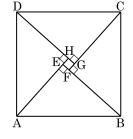

15. 다음 그림에서 $\overline{\mathrm{BF}}=2\,\sqrt{5}$ 일 때, $\overline{\mathrm{AB}}$ 의 길 이를 구하여라.

▶ 답: ▷ 정답: 2

 $\overline{\mathrm{AB}}=a$ 라 두면 $\overline{\mathrm{BF}}=\sqrt{a^2+a^2+a^2+a^2+a^2}=a\,\sqrt{5}=2\,\sqrt{5},\,a=2\,$ 이다.

16. 다음 그림은 $\angle A = 90^{\circ}$ 인 직각삼각형 ABC에서 세변을 각각 한 변으로 하는 정사각형을 그린 것이다. x의 값을 구하여라.

 $\underline{\mathrm{cm}}$


정답: 3 <u>cm</u>

답:

BC와 수직인 \overline{AM} 을 그을 때 \overline{BC} 와의 교점을 P라고 하면, $\Box BFMP = \Box EBAD$, $\Box PMGC = \Box IACH$ 이다.

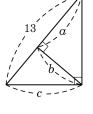
F M G
□PMGC = 25 cm² - 16 cm² = 9 cm² = □ACHI이다. 그러므로
x = 3 cm 이다.

17. 다음 그림에서 4 개의 직각삼각형은 모두 합동이고 사각형 ABCD 의 넓이는 36cm², AE 의길이는 4cm 일 때, 사각형 EFGH 의 둘레의길이는?

- ① $2(\sqrt{5}-1) \text{ cm}$ ④ $8(\sqrt{6}-1) \text{ cm}$
- ② $4(\sqrt{6}-1) \text{ cm}$ ③ $8(\sqrt{5}-2) \text{ cm}$
- $3 4(\sqrt{5}-1) \text{ cm}$
- ` ,

□ABCD 의 넓이가 36cm² 이므로

한 변의 길이는 6cm 이다.


 $\overline{AH} = \sqrt{6^2 - 4^2} = \sqrt{20} = 2\sqrt{5}$ (cm) 이다.

 $\overline{AE}=4\mathrm{cm}$ 이고 사각형 EFGH 의 한 변인 $\overline{EH}=\overline{AH}-\overline{AE}$ 이므로

 $\overline{EH} = 2\sqrt{5} - 4 = 2(\sqrt{5} - 2)$ 이고, 사각형 EFGH 의 둘레의 길이는

 $2(\sqrt{5}-2) \times 4 = 8(\sqrt{5}-2)$ cm이다.

18. 다음은 직각삼각형의 한 꼭짓점에서 수선의 발을 내린 것이다. $a^2 + b^2 + c^2$ 의 값을 구하여라.

▷ 정답: 169

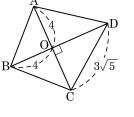
답:

 b^2 과 c^2 을 a 로 나타내어 보자.

해설

닮은 삼각형의 성질을 이용하면 $b^2=a\left(13-a\right),\,c^2=13\left(13-a\right)$ 이다. 따라서 $a^2+b^2+c^2=a^2+a\left(13-a\right)+13\left(13-a\right)=169$

19. 다음 그림과 같이 $\angle B=90^\circ$ 인 직각삼각형 ABC 에서 $\overline{AE}=10\mathrm{cm}$ 일 때, $\overline{\mathrm{CD}}^2-\overline{\mathrm{DE}}^2$ 의 값을 구하여라.(단, 단위는 생략)

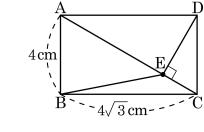

▷ 정답: 69

• --

▶ 답:

 $\overline{AC} = \sqrt{5^2 + 12^2} = 13 \text{ cm }$ 이므로 $\overline{CD}^2 - \overline{DE}^2 = 13^2 - 10^2 = 69$

20. 다음 그림과 같은 사각형 ABCD 에서 $\overline{AC}\bot\overline{BD}$ 일 때, $\overline{AD}^2+\overline{BC}^2$ 의 값을 구하여라.


답:

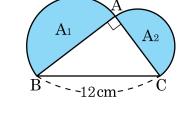
▷ 정답: 77

 $\Delta {
m OAB}$ 는 직각삼각형이므로 $\overline{
m AB}=4\sqrt{2}$ 대각선이 직교하는 사각형에서 두 쌍의 대변의 제곱의 합이 서로

같으므로 $\overline{AD}^2 + \overline{BC}^2 = \left(4\sqrt{2}\right)^2 + \left(3\sqrt{5}\right)^2 = 32 + 45 = 77$

 ${f 21}.$ 아래 그림은 직사각형 ABCD 의 꼭짓점 D 에서 대각선 AC 에 수선 DE 를 긋고, 점 B 와 점 E 를 연결한 것이다. $\overline{AB}=4\mathrm{cm},\overline{BC}=4\sqrt{3}\mathrm{cm}$ 일 때, $\overline{\mathrm{BE}}$ 의 길이는 몇 cm 인가?

- ① $2\sqrt{2}$ cm $4 2\sqrt{5} \, \mathrm{cm}$
- $\bigcirc 2\sqrt{7}\,\mathrm{cm}$


 $2\sqrt{3}$ cm

 $34 \, \mathrm{cm}$

해설 $\triangle ABC$ 에서 $\overline{AC} = 8 \, \mathrm{cm}$ ΔACD 의 넓이를 이용하면 $\overline{\mathrm{ED}} = 2\,\sqrt{3}\,\mathrm{cm}$

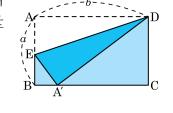
△DCE 에서 $\overline{EC} = 2 \text{ cm}$, $\overline{AE} = 6 \text{ cm}$ $\overline{AE^2} + \overline{EC^2} = \overline{BE^2} + \overline{ED^2}$, $6^2 + 2^2 = x^2 + (2\sqrt{3})^2$ ∴ $x = 2\sqrt{7} \text{ cm}$

22. 직각삼각형 ABC 에 대해 그림과 같이 반원을 그리고, 각각의 넓이를 A_1, A_2 라고 했을 때, A_1 – $A_2 = 2\pi\,\mathrm{cm}^2$ 이다. A_1, A_2 를 각각 구하

 $\underline{\mathrm{cm}^2}$

▶ 답: $\underline{\mathrm{cm}^2}$ ightharpoonup 정답: $A_1=10\pi\ \underline{\mathrm{cm}^2}$

ightharpoonup 정답: $A_2=8\pi\ \underline{\mathrm{cm}^2}$


$\overline{\mathrm{BC}}$ 를 지름으로 하는 반원의 넓이는 $\frac{1}{2}\cdot 6^2\cdot \pi=18\pi\,\mathrm{cm}^2$ 이

해설

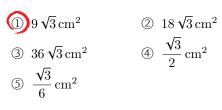
답:

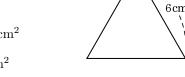
고, 피타고라스 정리에 의해 $A_1+A_2=18\pi\,\mathrm{cm}^2$ 이 성립하고, $A_1-A_2=2\pi\,\mathrm{cm}^2$ 이므로 따라서 연립방정식을 풀면 $A_1=10\pi\,\mathrm{cm}^2$, $A_2=8\pi\,\mathrm{cm}^2$ 이다.

23. 직사각형 ABCD 를 꼭짓점 A 가 \overline{BC} 위에 오도록 접었을 때, 다음 중 옳지 <u>않은</u> 것을 모두 고르면?

① $\triangle AED \equiv \triangle A'ED$

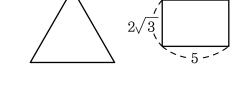
 $\bigcirc \overline{BB} = \overline{BA'}$


 $\overline{\text{DE}} = b$


해설

 $\overline{\mathrm{AD}} = \overline{\mathrm{A'D}}$ 이므로 $\overline{\mathrm{A'C}} = \sqrt{b^2 - a^2}$ 이다. $\angle \mathrm{DAE} = \angle \mathrm{DA'E} = \angle \mathrm{R}$, $\angle \mathrm{ADE} = \angle \mathrm{A'DE}$, $\overline{\mathrm{DE}}$ 는 공통이므로

 $\triangle AED \equiv \triangle A'ED(RHA합동)$ $\overline{DE} \neq b$, $\overline{EB} \neq \overline{BA'}$ 이다. $\triangle AED = \triangle CDE(엇각)$ 이다.
따라서 옳지 않은 것은 ②, ④이다.


24. 한 변의 길이가 6 cm 인 정삼각형의 넓이를 구하면?

정삼각형의 넓이는 $\frac{\sqrt{3}}{4} \times 6^2 = 9\sqrt{3} \text{ (cm}^2)$

25. 다음 그림은 서로 넓이가 같은 정삼각형과 직사각형이다. 정삼각형의 한 변의 길이를 구하여라.


▶ 답:

ightharpoonup 정답: $2\sqrt{10}$

(정삼각형의 넓이 $) = \frac{\sqrt{3}}{4} \times ($ 한 변의 길이 $)^2$ 이므로 정삼각형의 한 변의 길이를 x 라고 하면 $\frac{\sqrt{3}}{4}x^2 = 10\sqrt{3}$

$$\therefore x = 2\sqrt{10}$$

26. 다음 그림의 $\triangle ABC$ 에서 $\angle A=75^{\circ}$, $\angle B=$ $45\,^{\circ}$, $\overline{\mathrm{AC}}=6\,\mathrm{cm}$ 일 때, $\triangle\mathrm{ABC}$ 의 넓이는?

①
$$\frac{8\sqrt{2} + 26}{2}$$
 cm² ② $\frac{8\sqrt{3} + 26}{2}$ cm² ③ $\frac{9\sqrt{3} + 26}{2}$ cm²
 ② $\frac{9\sqrt{3} + 27}{2}$ cm² ⑤ $\frac{9\sqrt{3} + 27}{3}$ cm²

②
$$\frac{2}{9\sqrt{3}+27}$$
 cm

$$3) \frac{3 + 3 + 2}{2} \text{ cm}^2$$

해설

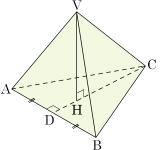
해설
$$\angle DAC = 75^{\circ} - 45^{\circ} = 30^{\circ}$$
이므로 $\overline{AD} = 3\sqrt{3} \text{ cm} = \overline{BD}$

$$\overline{\mathrm{DC}} = 3\,\mathrm{cm}$$
이므로 $\overline{\mathrm{BC}} = \overline{\mathrm{BD}} + \overline{\mathrm{DC}} = 3\,\sqrt{3} + 3$

$$\triangle ABC = \frac{1}{2} \times 3\sqrt{3} \times (3\sqrt{3} + 3) = \frac{9\sqrt{3} + 27}{2} \text{ cm}^2$$

27. 이차함수 $y = x^2 + 4x - 6$ 의 꼭짓점을 P, y 축과 만나는 점의 좌표를 Q 라 할 때, 선분 PQ 의 길이를 구하여라.

□:


> 정답: 2√5

해설 $y = x^2 + 4x - 6 = (x+2)^2 - 10$

꼭짓점 P(-2, -10) Q 는 y 절편이므로 (0, -6)

 $\overline{PQ} = \sqrt{(-2-0)^2 + (-10+6)^2}$ $= \sqrt{4+16} = \sqrt{20} = 2\sqrt{5}$

28. 다음 그림과 같이 부피가 $54\sqrt{6}\,\mathrm{cm}^3$ 인 정사면체 V – ABC 의 꼭짓점 V에서 밑면에 내린 수선의 발을 H, \overline{AB} 의 중점을 D 이라 할 때, $\triangle VCH$ 의 넓 이는?

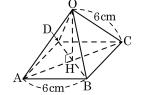
- ① $12\sqrt{6} \text{ cm}^2$ ② $16\sqrt{2} \text{ cm}^2$ ③ $16\sqrt{6} \text{ cm}^2$

한 변의 길이가 a 인 정사면체에서의 부피 $:V=rac{\sqrt{2}}{12}a^3=54\sqrt{6}$ 이므로 한 변의 길이 $a=6\sqrt{3}(\,\mathrm{cm})$

한 변의 길이가 $6\sqrt{3}\,\mathrm{cm}$ 인 정사면체에서의 높이 $\overline{\mathrm{VH}}=\frac{\sqrt{6}}{3}\,\mathrm{x}$ $6\sqrt{3} = 6\sqrt{2}$ (cm) 이다.

한 변의 길이가 $6\sqrt{3}\,\mathrm{cm}$ 인 정삼각형에서의 높이 $\overline{\mathrm{CD}}=\frac{\sqrt{3}}{2}\,\mathrm{x}$ $6\sqrt{3} = 9(\text{cm})$ 이다.

 $\therefore \triangle VCH = \frac{1}{2} \times \overline{CH} \times \overline{VH}$ $= \frac{1}{2} \times \left(\overline{\mathrm{CD}} \times \frac{2}{3}\right) \times \overline{\mathrm{VH}}$

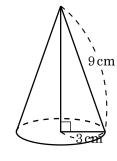

 $= \frac{1}{2} \times 6 \times 6 \sqrt{2}$

 $=18\sqrt{2}({\rm \,cm^2})$

29. 다음 그림과 같이 모든 모서리의 길이가 $6\,\mathrm{cm}$ 인 정사각뿔 O – ABCD의 높이는?

 $\bigcirc 3\sqrt{2}\,\mathrm{cm}$ ① $2\sqrt{2}$ cm

- $4 5\sqrt{2} \, \text{cm}$ $34\sqrt{2}$ cm
- $\bigcirc 6\sqrt{2}\,\mathrm{cm}$



 $\Box ABCD$ 가 정사각형이므로 $\overline{AC}=\sqrt{6^2+6^2}=6\sqrt{2}(\,\mathrm{cm})$

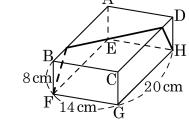
 $\overline{AH} = \frac{1}{2}\overline{AC} = 3\sqrt{2}(\text{cm})$

 $\therefore \overline{OH} = \sqrt{6^2 - (3\sqrt{2})^2} = 3\sqrt{2}(\text{cm})$

30. 다음 그림에서 호 AB 의 길이는 $6\pi {\rm cm}$, $\overline{\rm OA} = 9{\rm cm}$ 이다. 이 전개도로 원뿔을 만들 때, 원뿔의 높이는?

- ① $3\sqrt{2}$ cm ② $6\sqrt{2}$ cm
- ② $4\sqrt{2}$ cm ⑤ $7\sqrt{2}$ cm

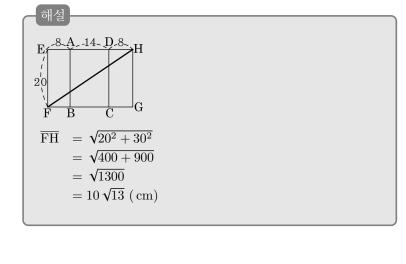
 $3 5\sqrt{2} \text{cm}$

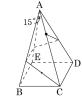

호 AB 의 길이, 밑면의 둘레의 길이가 $2\pi r = 6\pi$ 이므로 밑면의 반지름의 길이 r = 3(cm) 이다.

해설

위의 전개도로 다음과 같은 원뿔이 만들어진다.

자라서 원뿔의 높이 $h=\sqrt{9^2-3^2}=\sqrt{81-9}=\sqrt{72}=6\sqrt{2}(\text{cm})$ 이다.


31. 다음 그림과 같은 직육면체의 겉면을 따라 모서리 AB , CD 를 거쳐 점 F 에서 점 H 까지 가는 최단거리를 구하여라.

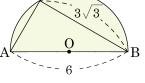

 $\underline{\mathrm{cm}}$

> 정답: 10√13 cm

▶ 답:

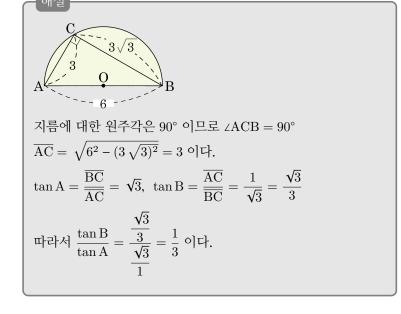
32. 다음 그림과 같이 $\overline{AB}=12\mathrm{cm}$, $\angle BAC=15^\circ$ 인 정사각뿔이 있다. 점 C 에서 옆면을 지나 \overline{AC} 에 이르는 최단거리를 구하면?

- ① $3\sqrt{3}$ cm ② $6\sqrt{3}$ cm
- ② $4\sqrt{3}$ cm ⑤ $7\sqrt{3}$ cm
- $3 5\sqrt{3}$ cm
- Ψ)0 γ30


12 cm H

C B E D

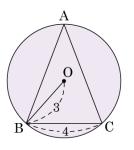
옆면의 전개도를 그려 생각하면, 점 C 에서 $\overline{AC'}$ 에 내린 수선 \overline{CH} 의 길이가 최단거리가 된다. $\overline{AC}:\overline{CH}=2:\sqrt{3}$ 이므로


 $\therefore \overline{CH} = 12 \times \frac{\sqrt{3}}{2} = 6\sqrt{3}(cm)$

33. 다음 그림과 같이 \overline{AB} 가 지름인 반원 O 에서 $\frac{\tan B}{\tan A}$ 의 값을 구하여라.

ightharpoonup 정답: $rac{1}{3}$

- **34.** 다음 그림과 같은 직육면체에서 $\angle AGE$ 의 크기를 x 라 할 때, $\sin x + \cos x$ 의 값이 \sqrt{a} 이다. a 의 값을 구하시오.
- B C S H


 답:

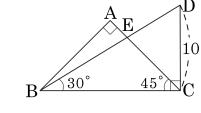
 ▷ 정답:
 2

7 02:

 $\overline{\mathrm{EG}} = 5, \overline{\mathrm{AG}} = 5\sqrt{2}, \overline{\mathrm{AE}} = 5$ 이므로 $\sin x + \cos x = \frac{5}{5\sqrt{2}} + \frac{5}{5\sqrt{2}} = \sqrt{2}$ 이다.

- 35. 다음 그림과 같이 $\overline{BC}=4$ 인 예각삼각형 ABC 에 외접하는 원 O 의 반지름의 길이가 3 일 때, $\cos A imes an A$ 의 값은?

$\overline{\mathrm{BO}}$ 의 연장선과 원이 만나는 점을 A' 이라고 하면,

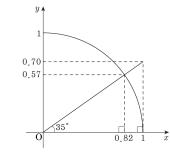

 $\overline{\rm BA'}$ 은 이 원의 지름이므로 $\overline{\rm BA'}=6$, $\angle {\rm A'CB}=90^{\circ}$, $\overline{\rm A'C}=$ $2\sqrt{5}$ 이다.

같은 호에 대한 원주각의 크기는 같으므로 $\angle A = \angle A \prime$

$$\cos A = \frac{\sqrt{5}}{3}$$
, $\tan A = \frac{2\sqrt{5}}{5}$ 이므로

 $\cos A \times \tan A = \frac{2}{3}$ 이다.

36. 다음 그림에서 $\triangle ABC$ 와 $\triangle DBC$ 는 각각 $\angle BAC = \angle BCD = 90^\circ$ 인 직 각삼각형이고, $\angle DBC=30^\circ$, $\angle ACB=45^\circ$, $\overline{CD}=10$ 일 때, $\overline{AC}+\overline{BD}$ 의 값은?



- $\bigcirc 35\sqrt{6} + 20$ $\bigcirc 20 5\sqrt{6}$
- ① $10\sqrt{3} + 17$ ② $10\sqrt{3} + 20$ ③ $5\sqrt{6} + 10$

 $\triangle BDC$ 에서 $\sin 30^\circ = \frac{\overline{DC}}{\overline{BD}} = \frac{10}{\overline{BD}} = \frac{1}{2}$, $\overline{BD} = 20$ 이다. 또, $\cos 30^\circ = \frac{\overline{BC}}{\overline{BD}} = \frac{\overline{BC}}{20} = \frac{\sqrt{3}}{2}$, $\overline{BC} = 10\sqrt{3}$ 이다. $\triangle ABC$ 에서 $\cos 45^\circ = \frac{\overline{AC}}{\overline{BC}} = \frac{\overline{AC}}{10\sqrt{3}} = \frac{\sqrt{2}}{2}$, $\overline{AC} = 5\sqrt{6}$ 이다.

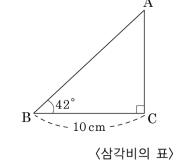
따라서 $\overline{\mathrm{AC}} + \overline{\mathrm{BD}} = 20 + 5\sqrt{6}$ 이다.

37. 다음 그림에서 $\cos 55^{\circ}$ 와 같은 값을 갖는 것은?

- ① $\sin 55^{\circ}$
- \bigcirc tan 55° $\textcircled{4} \cos 35^{\circ}$ $\textcircled{5} \tan 35^{\circ}$
- 35° $\sin 35^{\circ}$

 $\sin 35^{\circ} = \frac{0.57}{1} = 0.57$

38. 다음 삼각비의 표를 이용하여 $\sin 15^\circ + \tan 16^\circ - \cos 14^\circ$ 의 값을 구하여라.

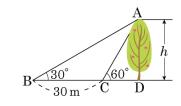

각도	사인(sin)	코사인(cos)	탄젠트(tan)
14°	0.2419	0.9703	0.2493
15°	0.2588	0.9659	0.2679
16°	0.2756	0.9613	0.2867

답:▷ 정답: -0.4248

해설

 $\sin 15^{\circ} - \cos 14^{\circ} + \tan 16^{\circ}$ = 0.2588 - 0.9703 + 0.2867 = -0.4248

39. 다음 그림에서 $\triangle ABC$ 의 넓이를 구하면?



x	sin x	cos x	tan x
42°	0.66	0.74	0.90
43°	0.68	0.73	0.93
44°	0.69	0.72	0.97

① $33 \,\mathrm{cm}^2$ ② $37 \,\mathrm{cm}^2$ $4 72 \,\mathrm{cm}^2$ $5 90 \,\mathrm{cm}^2$

 $345\,\mathrm{cm}^2$

 $\overline{\mathrm{AC}}=x$ 라 하면 $\angle \mathrm{B}=42^\circ$ 이므로 $x=10 imes an 42^\circ=10 imes 0.9=9$ 따라서 $\triangle ABC$ 의 넓이는 $10 \times 9 \times \frac{1}{2} = 45 \text{(cm}^2)$ 이다. **40.** 다음 그림에서 나무의 높이 h는? (단, $\sqrt{3} = 1.7$ 로 계산한다.)

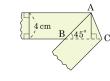
④ 24.5m

① 21.5m

② 22.5m ③ 25.5m ③ 23.5m

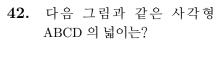
 $\angle BAC = 30^{\circ}$ 이므로 $\overline{BC} = \overline{AC} = 30(m)$

△ACD 에서

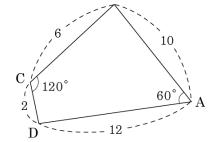

 $h = 30\sin 60^{\circ}$

 $= 30 \times \frac{\sqrt{3}}{2}$ $= 15\sqrt{3}$

= $15 \sqrt{3}$ = $15 \times 1.7 = 25.5 (m)$

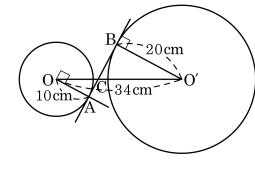

 $\therefore h = 25.5 \text{m}$

41. 다음 그림과 같이 폭이 4cm 인 종이 테이프를 선분 AC 에서 접었다. $\angle ABC = 45^{\circ}$ 일 때, $\triangle ABC$ 의 넓이는?



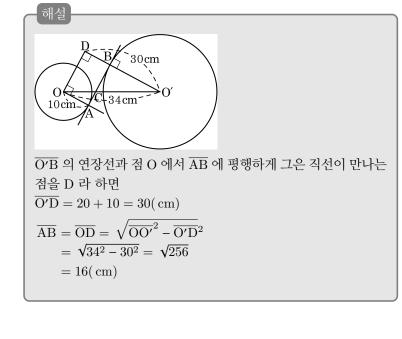
- ① $7\sqrt{2} \text{ cm}^2$ ② $8\sqrt{2} \text{ cm}^2$ ③ $9\sqrt{2} \text{ cm}^2$ $4 14 \sqrt{2} \text{ cm}^2$ $5 16 \sqrt{2} \text{ cm}^2$

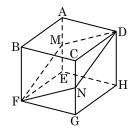
∠DAC = ∠BAC (∵ 접은 각), ∠DAC = ∠BCA (∵ 엇각)이므로 $\angle \mathrm{BAC} = \angle \mathrm{BCA}$ ΔABC 는 이등변삼각형이고, $\overline{AH} = 4 \mathrm{cm}$ 이므로 $\overline{AB} = \overline{BC} = \frac{4}{\sin 45^{\circ}} = 4\sqrt{2} \text{ (cm)}$ (넓이)= $\frac{1}{2} \times (4\sqrt{2})^2 \times \sin 45^\circ = 8\sqrt{2} (\text{cm}^2)$


- ① $30\sqrt{3}$
- ② $31\sqrt{3}$
- $32\sqrt{3}$
- $4933\sqrt{3}$
- ⑤ $34\sqrt{3}$

점 B와 D를 연결하면 $\Box ABCD = \frac{1}{2} \times 10 \times 12 \times \sin 60^{\circ} + \frac{1}{2} \times 6 \times 2 \times \sin 60^{\circ}$

 $= 60 \times \frac{\sqrt{3}}{2} + 6 \times \frac{\sqrt{3}}{2}$ $= 30\sqrt{3} + 3\sqrt{3} = 33\sqrt{3}$

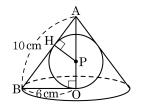

43. 다음 그림에서 반지름의 길이가 $10\,\mathrm{cm}$, $20\,\mathrm{cm}$ 인 원 O, O' 의 중심 사이의 거리는 $34\,\mathrm{cm}$ 이다. 공통접선 \overline{AB} 의 길이를 구하여라.


 $\underline{\mathrm{cm}}$

▷ 정답: 16<u>cm</u>

▶ 답:

44. 다음 그림과 같은 한 변의 길이가 6인 정육 면체에서 \overline{AE} 의 중점을 M, \overline{CG} 의 중점을 N 이라 할 때, □MFND의 넓이를 구하여라.



▶ 답: ightharpoonup 정답: $18\sqrt{6}$

 $\overline{MN} = \overline{AC} = 6\sqrt{2}$ $\overline{DF} = 6\sqrt{3},$

 \square MFND 의 넓이 : $6\sqrt{3} \times 6\sqrt{2} \times \frac{1}{2} = 18\sqrt{6}$

45. 다음 그림과 같이 밑면의 반지름의 길이가 6cm, 모선의 길이가 10cm 인 원뿔에 내접하는 구가 있다. 이 구의 반지름의 길이는?

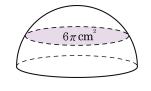
①3cm

② 45cm 45 ③ 15cm

 $4 15\sqrt{3}$ cm

- 해설 - 제설 =

 $\overline{AO} = \sqrt{10^2 - 6^2} = 8$ 내접한 구의 반지름의 길이를 x라 두면


 $\overline{OP} = x = \overline{HP}, \ \overline{AP} = 8 - x$ 이다.

△AHP ♡ △AOB 이므로 (∵ ∠HAP를 공유) ĀP : ĀB = ĦP : BO

8 - x : 10 = x : 6

 $x = 3 \, \text{(cm)}$

46. 다음 반구에서 반지름의 $\frac{1}{2}$ 지점을 지나고 밑면에 평행하게 자른 단면의 넓이가 $6\pi {\rm cm}^2$ 일 때, 반구의 겉넓이를 구하면?

- ① $6\pi \,\mathrm{cm}^2$ ② $12\pi \,\mathrm{cm}^2$ $\Im 30\pi\,\mathrm{cm}^2$
- $3 18\pi \,\mathrm{cm}^2$

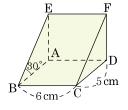
밑면에 평행하게 자른 단면의 넓이가

 $6\pi\,\mathrm{cm}^2$ 이므로 단면의 반지름의 길이를 $a\,\mathrm{cm}$ 라고 하면 $\pi a^2 = 6\pi$, $a^2 = 6$ $\therefore a = \sqrt{6}$

반구의 반지름의 길이를 r cm 라고 하면 $r^2 = \left(\frac{1}{2}r\right)^2 + a^2$,

 $\frac{3}{4}r^2 = 6$, $r^2 = 8$ 반구의 겉넓이 = 구의 겉넓이 $\times \frac{1}{2}$ + 밑면의 넓이

구의 겉넓이 × $\frac{1}{2}=4\pi r^2$ × $\frac{1}{2}=4\pi$ × 8 × $\frac{1}{2}=16\pi (\,\mathrm{cm}^2)$ 밑면의 넓이 = $\pi r^2 = \pi \times 8 = 8\pi (\text{cm}^2)$ 따라서 반구의 겉넓이는 $16\pi + 8\pi = 24\pi (\text{cm}^2)$ 이다.


- 47. $\tan(A 15^{\circ}) = 1$ 이고, $x^2 2x \tan A 3(\tan A)^2 = 0$ 의 두 근을 구하면? (단, 0° < A < 90°)
 - ① $3\sqrt{3}$, $2\sqrt{3}$ $4 \ 2\sqrt{3}, \ \sqrt{3}$ $5 \ -\sqrt{3}, \ -3\sqrt{3}$
- ② $-\sqrt{3}$, $3\sqrt{3}$ ③ $2\sqrt{3}$

해설

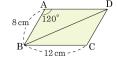
 $an 45^\circ = 1$ 이므로 A - $15^\circ = 45^\circ$, A = 60° 이다. 따라서

 $x^2 - 2\tan 60^\circ x - 3(\tan 60^\circ)^2 = x^2 - 2\sqrt{3}x - 9 = 0$ 이다. 그슬 구하면 $(x-3\sqrt{3})(x+\sqrt{3})=0$, $x=3\sqrt{3}$, $-\sqrt{3}$ 이다.

48. 다음 그림과 같이 \overline{BC} = 6 cm, \overline{CD} = 5 cm, ∠ABE = 30 인 삼각기둥이 있다. 이 삼각기둥의 모든 모서리의 합은?

- ① $30(2+\sqrt{3})$ cm $3 \ 2 \left(13 - 5\sqrt{3}\right) \text{ cm}$
- ② $(28 + 10\sqrt{3})$ cm $4 \ 2\left(13+5\sqrt{3}\right) \text{ cm}$
- ⑤ $30(\sqrt{3}-1)$ cm

 $\overline{AE} = \tan 30^{\circ} \times \overline{AB} = \frac{\sqrt{3}}{3} \times 5 = \frac{5\sqrt{3}}{3} (\text{cm})$ $\overline{BE} = \frac{\overline{AB}}{\cos 30^{\circ}} = \frac{5}{\frac{\sqrt{3}}{2}} = \frac{10}{\sqrt{3}} = \frac{10\sqrt{3}}{3} (\text{cm})$


 $\overline{BC} = \overline{AD} = \overline{EF} = 6\,\mathrm{cm}$

 $\overline{AB} = \overline{CD} = 5$ cm, $\overline{AE} = \overline{DF} = \frac{5\sqrt{3}}{3}$ cm

 $\overline{\mathrm{BE}}=\overline{\mathrm{CF}}=rac{10\,\sqrt{3}}{3}\,\mathrm{cm}$ 따라서 모든 모서리의 합은 18+10+

 $\frac{10\sqrt{3}}{3} + \frac{20\sqrt{3}}{3} = 28 + 10\sqrt{3}$ (cm) 이다.

f 49. 다음 그림과 같은 평행사변형에서 $\angle A=120^\circ$ 일 때, 대각선 $\overline{
m BD}$ 의 길이의 제곱의 값을 구하면?

① 108 ② 144

③ 196

4 304

⑤ 340

D 에서 \overline{AB} 의 연장선에 내린 수선의 발을 H 라 하면 △ADH 에서

 $\overline{\rm AH} = \overline{\rm AD} \; \cos 60^{\circ} = 6$

 $\overline{\rm DH} = \overline{\rm AD} \ \sin 60^\circ = 6 \, \sqrt{3}$ △BDH 에서

 $\overline{BD} = \sqrt{\overline{BH^2 + \overline{DH^2}}}$

 $= \sqrt{(6+8)^2 + (6\sqrt{3})^2}$

 $=\sqrt{304}$ (cm)

탑을 올려다 본 각의 크기가 51°, 내려다 본 각의 크기가 36° 였다. 이 석탑 전체 의 높이를 구하여라. (단, $\tan 51$ ° = 1.2, $\tan 36$ ° = 0.7)

50. 태희는 석탑에서 6m 떨어진 곳에서 석

- ① 9.2 (m) ③ 11.4 (m)
- ② 10 (m) ④ 12.6 (m)
- ⑤ 13.2 (m)
- _ ()

-6 m---D

해설

 $\overline{BC} = 6 \tan 51^{\circ} = 6 \times 1.2 = 7.2 \text{ (m)}$ $\overline{CD} = 6 \tan 36^{\circ} = 6 \times 0.7 = 4.2 \text{ (m)}$

 $\therefore \overline{BD} = \overline{BC} + \overline{CD} = 7.2 + 4.2 = 11.4 \text{ (m)}$