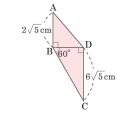

다음 그림과 같이 한 변의 길이가 6 cm 인 마름모의 넓이를 구하여라. 1.


 $\underline{\rm cm^2}$

ightharpoonup 정답: $18\sqrt{3}$ $\underline{
m cm}^2$

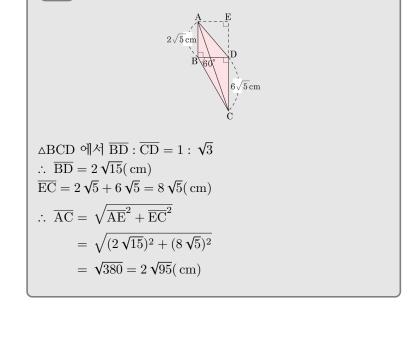
답:

 $\Delta {
m ABC}$ 는 한 변의 길이가 $6 {
m cm}$ 인 정삼각형이므로 $\frac{\sqrt{3}}{4} imes 6^2 =$ $9\sqrt{3}(\text{cm}^2)$ 따라서 마름모의 넓이는 $2\times 9\sqrt{3}=18\sqrt{3}(\text{cm}^2)$ 이다.

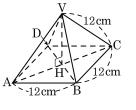
2. 다음 그림의 □ABCD 에서 ∠ABD = ∠BDC = 90° , ∠DBC = 60° 일 때, 두 대각선 \overline{BD} , \overline{AC} 의 길이를 각각 구하여라.

 $\underline{\mathrm{cm}}$

 $\underline{\mathrm{cm}}$

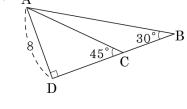

 ■ 답:

 ■ 답:


ightharpoonup 정답: $\overline{\mathrm{BD}} = 2\sqrt{15} \mathrm{\underline{cm}}$

ightharpoons 정답: $\overline{AC} = 2\sqrt{95}\underline{cm}$

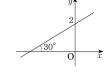
해설


3. 다음 그림과 같이 밑면은 한 변의 길이가 12 cm 인 정사각형이고, 옆면의 모서리의 길이가 모두 $12\,\mathrm{cm}$ 인 사각뿔이 있을 때, 이 사각뿔의 부피를 구하면?

- ① $72\sqrt{2} \text{ cm}^3$ ② $144\sqrt{2} \text{ cm}^3$ ④ $\frac{144}{3}\sqrt{2} \text{ cm}^3$ ⑤ $144\sqrt{3} \text{ cm}^3$
- $\boxed{3}288\,\sqrt{2}\,\mathrm{cm}^3$

사각뿔의 높이는 $\sqrt{12^2 - (6\sqrt{2})^2} = 6\sqrt{2}$ (cm) $V = 12^2 \times 6\sqrt{2} \times \frac{1}{3} = 288\sqrt{2}$ (cm³)

- 다음과 같은 직각삼각형 ABD가 있 **4.** 다. BC의 길이는?
 - ① $6(\sqrt{3}-1)$
 - ② $7(\sqrt{3}-1)$
 - $38(\sqrt{3}-1)$
 - $49(\sqrt{3}-1)$
 - $5 \ 10(\sqrt{3}-1)$

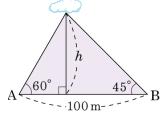


 $\overline{\text{CD}} = 8$, $\overline{\text{BC}} = x$ 라고 하면

 $\tan 30^{\circ} = \frac{\overline{AD}}{\overline{BD}} = \frac{8}{x+8}$ $\frac{1}{\sqrt{3}} = \frac{8}{x+8}, \ x+8 = 8\sqrt{3}$

 $\therefore \ x = 8\sqrt{3} - 8 = 8(\sqrt{3} - 1)$

다음 그림과 같이 y 절편이 2 이고 x 축과 그래프가 이루는 각의 크기가 **5.** 30° 일 때, 이 그래프의 방정식을 구하여라.


①
$$y = \frac{\sqrt{2}}{2}x + 2$$
 ② $y = \frac{\sqrt{3}}{2}x + 2$ ③ $y = \frac{\sqrt{2}}{3}x + 2$
② $y = \frac{\sqrt{3}}{3}x + 2$

(3)
$$y = \frac{1}{3}x + 2$$

해설
$$y = ax + b$$
에서 $a = \tan 30^\circ = \frac{\sqrt{3}}{3}, b = 2$
$$\therefore y = \frac{\sqrt{3}}{3}x + 2$$

$$\dots y = \frac{1}{3}x + \frac{1}{3}$$

다음 그림과 같이 100 m 떨어진 두 지점 A, B에서 하늘에 떠있는 구름 C를 올려다본 각도가 각각 60°, 45°였다. 이 때, 구름의 높이 h는?

- ① $100 \,\mathrm{m}$ ③ $100 \,\sqrt{3} \,\mathrm{m}$
- ② $50\sqrt{3} \text{ m}$ ④ $100(\sqrt{3} - 1) \text{ m}$
- $50(3 \sqrt{3}) \,\mathrm{m}$
- , ,

점 C 에서 변 AB 에 내린 수선의 발을 H 라 하고, 구름의 높이를

h 라 하면 직각삼각형 ACH 에서 ∠ACH = 30°이므로

 $\tan 30\,^\circ = \frac{\overline{\rm AH}}{\overline{\rm CH}} \ , \ \overline{\rm AH} = \overline{\rm CH} \times \tan 30\,^\circ = \frac{1}{\sqrt{3}} h$

 $\tan 45\,^{\circ} = \frac{\overline{\overline{BH}}}{\overline{\overline{CH}}}$, $\overline{\overline{BH}} = \overline{\overline{CH}} \times \tan 45\,^{\circ} = h$

또, 직각삼각형 BCH 에서 ∠BCH = 45° 이므로

이 때, $\overline{AB} = \overline{AH} + \overline{BH} = \frac{h}{\sqrt{3}} + h = 100$

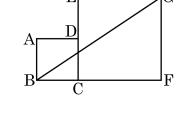
 $\therefore h = \frac{100\sqrt{3}}{1+\sqrt{3}} = 50(3-\sqrt{3}) \,\mathrm{m}$

7. 어떤 전자제품 회사에서 기존에 가로가 16 인치이고 가로와 세로의 비율이 4:3 인 모니터만을 생산하다가, 디자인적인 측면을 강화하기 위해 대각선의 길이는 유지하면서 가로와 세로의 비율이 $6:\sqrt{14}$ 인 모니터를 생산하였다. 새로운 모니터의 가로와 세로의 길이를 각각 $a\sqrt{b}$, $c\sqrt{d}$ 라고 할 때, a+b+c+d 의 값을 구하시오. (단, b,d는 최소의 자연수)

▶ 답: ➢ 정답 : 25

해설

가로가 16 인치이고 가로와 세로의 비율이 4:3 인 모니터의 대각선의 길이는 20 인치이다.


새로운 모니터의 가로의 길이를 6x, 세로의 길이를 $\sqrt{14}$ x 라고 하면 피타고라스 정리에 따라 $(6x)^2 + (\sqrt{14}x)^2 = 20^2$

 $50x^2 = 400$

x > 0 이므로 $x = 2\sqrt{2}$ 따라서 가로의 길이는 $6 \times 2\sqrt{2} = 12\sqrt{2}(인치)$

세로의 길이는 $\sqrt{14} \times 2\sqrt{2} = 4\sqrt{7}$ (인치) 이므로 a+b+c+d=25 이다.

다음 그림은 정사각형을 두 개 연결해놓은 그림이다. 정사각형 ABCD 8. 의 넓이는 $12\mathrm{cm}^2$, 정사각형 ECFG 의 넓이는 $48\mathrm{cm}^2$ 일 때, $\overline{\mathrm{BG}}$ 의 길이를 구하여라.

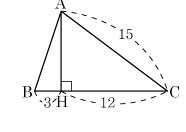
 $\underline{\mathrm{cm}}$

ightharpoonup 정답: $2\sqrt{39}$ $\underline{\mathrm{cm}}$

정사각형 ABCD 의 넓이가 $12 \mathrm{cm}^2$ 이므로 $\overline{\mathrm{BC}}$ 의 길이는 $\sqrt{12}$ =

답:

 $2\sqrt{3}$ (cm) 이다. 정사각형 ECFG의 넓이가 $48~\mathrm{cm}^2$ 이므로 $\overline{\mathrm{CF}}$ 의 길이는 $\sqrt{48}$ =


 $4\sqrt{3}$ (cm)이다.

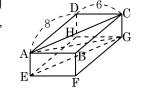
 $\overline{BF} = 2\sqrt{3} + 4\sqrt{3} = 6\sqrt{3}(cm)$, $\overline{GF} = 4\sqrt{3}(cm)$ $\overline{BG} = \sqrt{(6\sqrt{3})^2 + (4\sqrt{3})^2}$

 $= \sqrt{108 + 48} = \sqrt{156}$

 $=2\sqrt{39}(\mathrm{cm})$

9. 다음 그림과 같은 삼각형 ABC 에 대하여 \overline{AB} 의 길이는?

 $4 3\sqrt{10}$


⑤ 5

 $\triangle AHC$ 에서 $\overline{AH} = \sqrt{15^2 - 12^2} = \sqrt{81} = 9$ $\triangle ABH$ 에서 $\overline{AB} = \sqrt{9^2 + 3^2} = \sqrt{90} = 3\sqrt{10}$

① $7\sqrt{2}$ ② 13 ③ $6\sqrt{2}$

해설

10. 직육면체 ABCD – EFGH 의 대각선 AG 의 길이가 √109 이고 AD = 8, CD = 6 일 때, □AEGC 의 넓이를 구하여라.

▶ 답:

▷ 정답: 30


직육면체의 높이 $\overline{\text{CG}} = x$ 라 하면

 $\overline{AG} = \sqrt{6^2 + 8^2 + x^2} = \sqrt{109}$ $x^2 = 9 \qquad \therefore \quad x = 3$ $\overline{AC} = \overline{EG} = \sqrt{8^2 + 6^2} = 10$

 $\overline{AC} = \overline{EG} = \sqrt{8^2 + 6^2} = 10$ \therefore $\Box AEGC$ 의 넓이는 $3 \times 10 = 30$ 이다.

.. driede | fil | L ux i

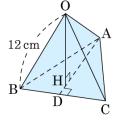
11. 다음 그림과 같이 한 모서리의 길이가 6 인 정 사면체 A – BCD 에서 점 M 이 \overline{BC} 의 중점일 때, △AMD 의 넓이는?

① 9 ② 10 ③ $9\sqrt{6}$ ④ $9\sqrt{3}$

 $\boxed{5}9\sqrt{2}$

 ΔAMD 는 $AM = DM = \sqrt{0} = 3$ = $3\sqrt{3}$ 인 이등변삼각형이고 ΔAMD 의 높이는 $\sqrt{(3\sqrt{3})^2 - 3^2} = \sqrt{18} = 3\sqrt{2}$ 이다. $\triangle AMD = \frac{1}{2} \times 6 \times 3\sqrt{2} = 9\sqrt{2}$

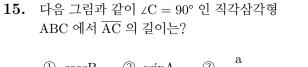
12. x 에 관한 이차방정식 $2x^2-11x+a=0$ 의 한 근이 $\sin 90^\circ+\cos 0^\circ$ 일 때, a 의 값을 구하면?

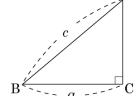

① 14 ② 13 ③ 12 ④ 11 ⑤ 10

이차방정식 $2x^2-11x+a=0$ 에 x=2 를 대입하면, $2\times 2^2-1$ $11 \times 2 + a = 0$ 8 - 22 + a = 0, a = 14

13. 다음 중 옳지 <u>않은</u> 것을 모두 고르면?

① $\sin 45^{\circ} = \cos 45^{\circ}$ ② $\cos 45^{\circ}$ ② $\cos 45^{\circ}$ ② $\cos 45^{\circ}$ ③ $\cos 45^{\circ}$ ④ $\sin 45^{\circ}$ ④ $\sin 45^{\circ}$


③ cos 48° < cos 38° ③ tan 35° < tan 40° ④ sin 37° < cos 37° ⑤ sin 56° > cos 56° 14. 한 모서리의 길이가 $12~{
m cm}$ 인 정사면체의 부피 를 구하여라.


▶ 답: $\underline{\mathrm{cm}^3}$ ightharpoonup 정답: $144\sqrt{2}$ cm^3

 $\overline{\rm AD} = 12 \times \cos 30^\circ = 6\sqrt{3} (\,{\rm cm})$ 이코, $\overline{\rm AH} = \frac{2}{3} \times \overline{\rm AD} = 4\sqrt{3} (\,{\rm cm})$ $\overline{OH} = \sqrt{12^2 - (4\sqrt{3})^2} = \sqrt{144 - 48} = 4\sqrt{6} \text{ (cm)}$

따라서 부피는 $\frac{1}{3} \times \frac{\sqrt{3}}{4} \times 12^2 \times 4\sqrt{6} = 144\sqrt{2} \text{(cm}^3)$ 이다.

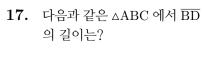
① $a\cos B$ ② $c\sin A$ ③ $\frac{a}{\cos B}$ ② $a\tan B$ ⑤ $\frac{ac}{\sin A}$

sin B, tan B를 이용하여 푼다.

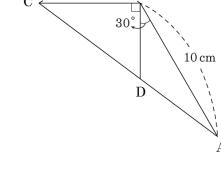
해설

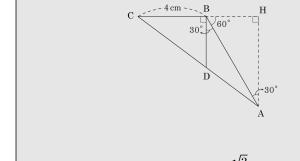
16. 다음 그림과 같이 지면으로부터 15m 높이에 있는 기구를 두 지점 A, B 에서 올려다 본 각도가 각각 55°, 50° 일 때, 다음 삼각비 표를 이용하여 두 지점 A, B 사이의 거리를 구하여 빈 칸에 알맞은 수를 써넣어라.(단, 결과값은 소수 둘째 자리에서 반올림한다.)

> 각도 sin cos 35 0.5736 0.8192 0.7002 40 0.6428 0.7660 0.8391


▶ 답: $\underline{\mathbf{m}}$

▷ 정답: 23.1m

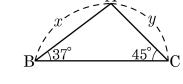

 $\overline{\mathrm{AH}} = 15 \times \tan 35^{\circ} = 10.503 (\,\mathrm{m})$


 $\overline{BH} = 15 \times \tan 40^{\circ} = 12.5865 (\mathrm{m})$ 따라서 $\overline{AH} + \overline{BH} = 10.503 + 12.5865 = 23.0895 = 23.1(\,\mathrm{m})$

이다.

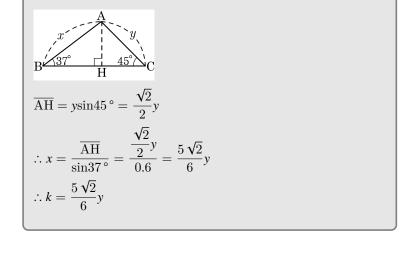
- ① $3\sqrt{3}$ cm
- $\boxed{\cancel{4}} \frac{20\sqrt{3}}{9} \text{cm}$
- 5 $\sqrt{3}$ cm

$$\overline{AH} = \overline{AB} \sin 60^{\circ} = 10 \times \frac{\sqrt{3}}{2} = 5\sqrt{3} \text{(cm)}$$

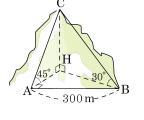

$$\overline{BH} = \overline{AB} \cos 60^{\circ} = 10 \times \frac{1}{2} = 5 \text{(cm)}$$

$$\overline{AH} : \overline{DB} = \overline{HC} : \overline{BC}$$

$$5\sqrt{3}: \overline{\rm DB} = 9:4$$


$$\overline{BD} = \frac{20\sqrt{3}}{9}(cm)$$

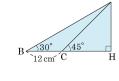
18. 다음 그림의 $\triangle ABC$ 에서 $\angle B=37\,^\circ$, $\angle C=45\,^\circ$ 일 때, x=ky이다. 이 때, k의 값을 구하여라. (단, $\sin 37\,^\circ=0.6, \cos 37\,^\circ=0.8$ 로 계산한다.)



답:

ightharpoonup 정답: $\frac{5\sqrt{2}}{6}$

19. 산의 높이 CH 를 측정하기 위하여 수평면 위에 거리가 300m 가 되도록 두 점 A, B 를 잡고, 필요한 부분을 측정한 결과가 다음 그 림과 같을 때, CH 의 길이를 구하여라.


> 정답: 150√2m

▶ 답:

 $\overline{\text{CH}}$ 의 길이를 x 라 하면 $\overline{\text{AH}} = \overline{\text{CH}} = x$ $\overline{\text{BH}} = \frac{x}{\tan 30^{\circ}} = \sqrt{3}x$ $\overline{\text{AB}} = \sqrt{\overline{\text{BH}}^2 - \overline{\text{AH}}^2}$ $= \sqrt{3x^2 - x^2}$ $= \sqrt{2}x$ = 300 (cm) $\therefore x = 150 \sqrt{2} \text{ (cm)}$

 $\underline{\mathbf{m}}$

20. 다음 $\triangle ABC$ 에 대한 설명 중 옳은 것은?

- ① $\overline{BC} = \overline{CA}$ 이다.
- ② $2\overline{BC} = \overline{CA}$ 이다.
- ③ $\overline{\text{CH}} = \overline{\text{AH}} = 6$ 이다.
- $\overline{\text{CH}} = \overline{\text{AH}} = 6(\sqrt{3} + 1)$ 이다. ⑤ $\overline{AB} = 12\sqrt{3}$ 이다.

$\overline{\mathrm{AH}} = x$ 라 하면

해설

 $\overline{\text{AH}} : \overline{\text{BH}} = 1 : \sqrt{3} = x : x + 12, \sqrt{3}x - x = 12, x = 6(\sqrt{3} + 1)$

 ΔACH 는 직각이등변삼각형이므로 $\overline{CH}=\overline{AH}=6(\sqrt{3}+1)$

이다.

 $\angle {
m BAH} = 60^\circ$ 이므로 $\overline{
m AB} = y$ 라 하면 $\overline{
m AB}:\overline{
m AH} = 2:1=y:$ $6(\sqrt{3}+1), y = 12(\sqrt{3}+1)$ 이다.