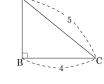
다음 그림에서 $\sin B$, $\cos B$, $\tan B$ 의 값을 차례로 구하여라. 1.


- ▶ 답:
- ▶ 답:
- ▶ 답:

ightharpoonup 정답: $\sin B = \frac{15}{17}$ ightharpoonup 정답: $\cos B = \frac{8}{17}$

ightharpoonup 정답: $an B = rac{15}{8}$

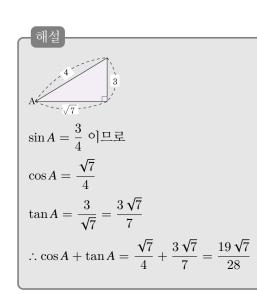
 $\overline{BC} = 17$ 이고 \overline{AB} 가 밑변이므로 $\therefore \sin B = \frac{15}{17}, \cos B = \frac{8}{17}, \tan B = \frac{15}{8}$

다음 그림과 같은 직각삼각형 ABC 에 대하여 $\sin C,\;\cos C,\;\tan C$ 의 **2**. 값을 구하여라.

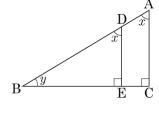
▶ 답: 답:

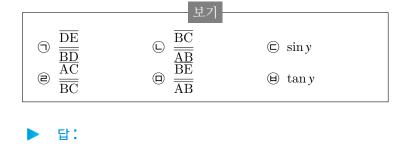
▶ 답:

ightharpoonup 정답: $\sin C = \frac{3}{5}$


ightharpoonup 정답: $\cos C = \frac{4}{5}$ ightharpoonup 정답: $an C = rac{3}{4}$

직각삼각형이므로 피타고라스 정리에 의해 높이의 길이는 3


높이가 3, 빗변이 5, 밑변이 4 이므로 $\sin C = \frac{3}{5}$, $\cos C = \frac{4}{5}$, $\tan C = \frac{3}{4}$ 이다.


- 3. $\sin A = \frac{3}{4}$ 일 때, $\cos A + \tan A$ 의 값은?

 - ① $\frac{16\sqrt{7}}{27}$ ② $\frac{17\sqrt{7}}{27}$ ③ $\frac{2\sqrt{7}}{3}$ ③ $\frac{2\sqrt{7}}{3}$

다음 보기 중 $\cos x$ 와 같은 값을 갖는 것 **4.** 을 모두 골라라.

답:

▷ 정답: ⑤

▷ 정답: ②

△ABC♡△DBE이므로 $\cos x = \frac{\overline{\mathrm{DE}}}{\overline{\mathrm{BD}}} = \frac{\overline{\mathrm{AC}}}{\overline{\mathrm{AB}}}, \ \sin y = \frac{\overline{\mathrm{DE}}}{\overline{\mathrm{BD}}} = \frac{\overline{\mathrm{AC}}}{\overline{\mathrm{AB}}}$ 이다.

따라서 $\cos x$ 와 같은 것은 $\frac{\overline{\mathrm{DE}}}{\overline{\mathrm{BD}}}, \sin y$ 이다.

5. 다음은 A, B, C, D, E 다섯 사람의 몸무게에 대한 편차를 나타낸 표이다. 이 다섯 사람의 몸무게의 평균이 65 kg 일 때, B 의 몸무게와 다섯 사람의 전체의 표준편차를 차례대로 나열한 것은? (단, 분산은 소수 첫째자리에서 반올림한다.)

학생 A B C D E 편차(kg) -2 3 1 x 0

① 60 kg, 1 kg ② 64 kg, 1 kg ③ 64 kg, 2 kg

④ 68 kg, 2 kg ⑤ 68 kg, 3 kg

B 의 몸무게는 65 + 3 = 68(kg)

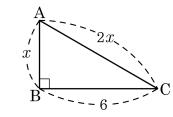
해설

또한, 편차의 합은 0 이므로 -2+3+1+x+0=0, x+2=0 ∴ x=-2

따라서 분산이 $\frac{(-2)^2 + 3^2 + 1^2 + (-2)^2 + 0^2}{5} = \frac{18}{5} = 3.6$

5 5 이므로 소수 첫째자리에서 반올림하면 4이다. 따라서 표준편차는 $\sqrt{4} = 2 \log$ 이다.

6 개의 변량 $x_1, x_2, x_3, \cdots, x_6$ 의 평균이 3이고 표준편차가 4일 때, $2x_1-1, 2x_2-1, 2x_3-1, \cdots, 2x_6-1$ 의 평균과 표준편차는? **6.**


② 평균: 3, 표준편차: 15

- - ③ 평균: 3, 표준편차: 20 ④ 평균 : 5, 표준편차 : 8
- ⑤ 평균 : 5, 표준편차 : 15

① 평균: 3, 표준편차: 8

n개의 변량 $x_1, x_2, x_3, \cdots, x_n$ 의 평균이 m이고 표준편차가 s일 때, 변량 $ax_1+b,ax_2+b,ax_3+b,\cdots,ax_n+b$ 에 대하여 평균은 am + b, 표준편차는 |a|s이므로 평균은 $2 \cdot 3 - 1 = 5$ 이고 표준편차는 |2| · 4 = 8이다.

7. 다음 그림과 같은 직각삼각형에서 x 의 값을 구하여라.

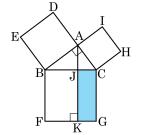
▶ 답:

ightharpoonup 정답: $2\sqrt{3}$

 $(2x)^2 = x^2 + 6^2$ $4x^2 - x^2 = 36$ $3x^2 = 36$

 $x^2 = 12$

 $\therefore x = 2\sqrt{3}$


8. 다음 그림에서 □JKGC 와 넓이가 같은 도형

① □DEBA ③ □ACHI

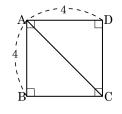
 \bigcirc $\triangle ABJ$

해설

- ② □BFKJ ④ △ABC

 $\square ext{JKGC}$ 의 넓이는 $\overline{ ext{AC}}$ 를 포함하는 정사각형의 넓이와 같다.

- 두 변의 길이가 6 cm, 7 cm 인 직각삼각형에서 남은 한 변의 길이를 9. 모두 고르면? (정답 2개)
 - $\sqrt{13}$ cm ③ 13 cm ① 8 cm $\sqrt{85} \, \mathrm{cm}$ $4 5\sqrt{3} \, \mathrm{cm}$


직각삼각형에서 세변의 길이를 6,7,x 라고 두자. 7을 가장 긴 변으로 하면

 $7^2 = 6^2 + x^2$ 에서

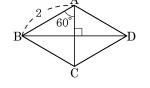
 $x^2 = 7^2 - 6^2 = 13 \therefore x = \sqrt{13}$ x를 가장 긴 변으로 하면

 $x = \sqrt{7^2 + 6^2} = \sqrt{85}$ $\therefore x = \sqrt{13}$ 또는 $\sqrt{85}$ (cm)

10. 다음 정사각형의 대각선의 길이가 $a\sqrt{b}$ 일 때, a+b 의 값을 구하여라. (단, b는 최소의 자연수이다.)

N ₩

▶ 답:

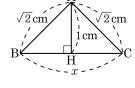

 \triangleright 정답: a+b=6

피타고라스 정리를 적용하여

 $x^2 = 4^2 + 4^2$ x > 0 이므로 $x = 4\sqrt{2}$

x > 0 이므로 $x = 4\sqrt{2}$ 따라서 a = 4, b = 2 이므로 a + b = 6 이다.

- 11. 다음 그림에서 □ABCD 는 한 변의 길이가 2 인 마름모이다. □ABCD 의 넓이는?
 - ① 2 ② $2\sqrt{3}$ ③ 4 ④ $4\sqrt{3}$ ⑤ $8\sqrt{3}$



해설

대각선의 교점을 H 라 하면 $\triangle ABH$ 에서 $\overline{AH}=1$, $\overline{BH}=\sqrt{3}$ 이므로 $\overline{AC}=2$, $\overline{BD}=2\sqrt{3}$ \therefore $\Box ABCD=\frac{1}{2}\times2\times2\sqrt{3}=2\sqrt{3}$

2

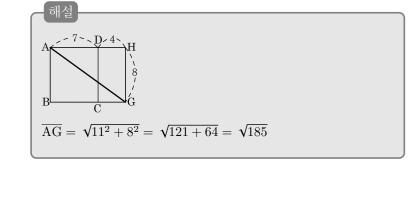
12. 다음 그림에서 삼각형 ABC 가 이등변삼각 형이고 $\overline{AH} \perp \overline{BC}$, $\overline{AH} = 1$ cm, $\overline{AB} = \overline{AC} = \sqrt{2}$ cm 일 때, x를 구하여라.

정답: 2 cm

▶ 답:

 $\overline{\mathrm{BH}} = \sqrt{\sqrt{2^2 - 1^2}} = 1 (\mathrm{cm})$ 이므로 $x = \overline{\mathrm{BC}} = 2 (\mathrm{cm})$ 이다.

 $\underline{\mathrm{cm}}$


13. 어떤 정육면체의 대각선의 길이가 $6\sqrt{3}$ 일 때, 이 정육면체의 한 모서 리의 길이를 구하여라.

▶ 답:

▷ 정답: 6

한 모서리의 길이가 a인 정육면체의 대각선의 길이는 $\sqrt{a^2 + a^2 + a^2} = \sqrt{3}a$ 이므로 $\sqrt{3}a = 6\sqrt{3}$ 에서 a = 6이다.

- . 다음 직육면체 점 A 에서 출발하여 \overline{CD} 를 지나 점 G 에 도달하는 최단 거리를 구하 면?
 - $\sqrt{182}$ $\sqrt{183}$ $\sqrt{181}$
- $\sqrt{184}$
- $\sqrt{3}$ $\sqrt{185}$

- **15.** 철수의 4회에 걸친 수학 성적이 80,82,86,76이다. 다음 시험에서 몇점을 받아야 평균이 84점이 되겠는가?
 - ① 90점 ② 92점 ③ 94점 ④ 96점 ⑤ 98점

해설 다음에 받아야 할 점수를 x점이라고 하면 $(평균) = \frac{80 + 82 + 86 + 76 + x}{5} = 84$

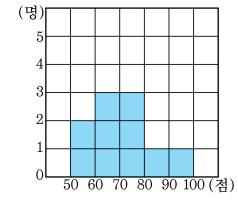
 $\frac{324 + x}{5} = 84$ 324 + x = 420∴ x = 96(점)

16. 네 개의 변량 4, 6, a, b 의 평균이 5 이고, 분산이 3 일 때, $a^2 + b^2$ 의 값은?

① 20 ② 40 ③ 60 ④ 80 ⑤ 100

변량 4, 6, a, b의 평균이 5이므로 $\frac{4+6+a+b}{4} = 5, \ a+b+10 = 20$ $\therefore a+b=10\cdots \bigcirc$ 또, 분산이 3 이므로

 $\frac{(4-5)^2 + (6-5)^2 + (a-5)^2 + (b-5)^2}{4} = 3$ $\frac{1+1+a^2-10a+25+b^2-10b+25}{4}=3$


 $\frac{a^2 + b^2 - 10(a+b) + 52}{4} = 3$

 $a^2 + b^2 - 10(a+b) + 52 = 12$

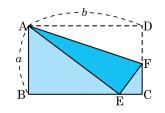
 $\therefore a^2 + b^2 - 10(a+b) = -40 \cdots \bigcirc$ ©의 식에 ⊙을 대입하면

 $\therefore a^2 + b^2 = 10(a+b) - 40 = 10 \times 10 - 40 = 60$

17. 다음 히스토그램은 학생 10명의 과학 성적을 나타낸 것이다. 이 자료 의 분산은?

- ① 12 ② 72 ③ 80 ④ 120

- **⑤**144


해설

평균: $\frac{55 \times 2 + 65 \times 3 + 75 \times 3 + 85 \times 1}{10} + \frac{95 \times 1}{10} = 71$

편차: -16, -6, 4, 14, 24

분산: $\frac{(-16)^2 \times 2 + (-6)^2 \times 3 + 4^2 \times 3}{14^2 \times 1 + 24^2 \times 1} + \frac{1440}{10} = 144$

18. 직사각형 ABCD 에서 꼭짓점 D 를 \overline{BC} 위의 점 $\rm E$ 에 오도록 접었을 때, 다음 중 옳은 것을 모두 고른 것은?

 \bigcirc $\angle BAE = \angle CFE$

 \bigcirc $\triangle AEF \equiv \triangle ADF$ \bigcirc $\overline{CF} : \overline{CE} = \overline{AB} : \overline{BE}$

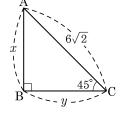
④ ⑦, ₺, ₴

① ①, ①

⑤ ⑤, ₴, ⊚

②¬, ©

 \bigcirc \bigcirc , \bigcirc


 $\overline{\mathrm{AD}} = \overline{\mathrm{AE}}$ 이므로 $\overline{\mathrm{BE}} = \sqrt{b^2 - a^2}$ 이다.

 $\angle {\rm BAE} \neq \angle {\rm CFE}$, $\angle {\rm EAF} = \angle {\rm DAF}, \ \overline{\rm AF}$ 는 공통이므로 $\triangle {\rm AEF} \equiv$

△ADF(RHA 합동) $\overline{\text{CE}} \neq \overline{\text{CF}} \neq \overline{\text{DF}}, \ \overline{\text{CF}} : \overline{\text{CE}} \neq \overline{\text{AB}} : \overline{\text{BE}}$ 이다.

따라서 옳은 것은 ①, ⓒ이다.

19. 다음 그림의 직각삼각형 ABC 에서 x, y 의 값을 각각 구하여라.

답:

▶ 답:

ightharpoonup 정답: x = 6

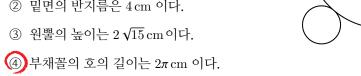
x = y

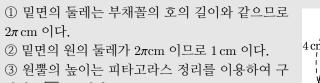
 $x : \overline{AC} = x : 6\sqrt{2} = 1 : \sqrt{2}$ x = 6, y = 6

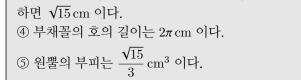
20. 다음 그림의 정사각뿔에서 점 M 은 \overline{BC} 의 중점이고, $\overline{OH} \bot \overline{AC}$, $\angle OMH = 60^{\circ}$ 일 때, 정사각뿔의 부피를 구하면?

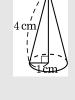
- ① $\frac{32\sqrt{3}}{3}$ cm³ ② $\frac{64\sqrt{3}}{3}$ cm³ ③ $\frac{128\sqrt{3}}{3}$ cm³ ④ $\frac{256\sqrt{3}}{3}$ cm³ ⑤ $\frac{512\sqrt{3}}{3}$ cm³

$\overline{\rm HM}=4{\rm cm}$

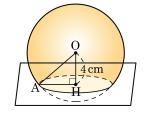

해설


 $\overline{\mathrm{HM}}:\overline{\mathrm{OH}}:\overline{\mathrm{OM}}=1:~\sqrt{3}:~2$ 이므로 $\overline{\mathrm{OM}} = 2\overline{\mathrm{HM}} = 8(\mathrm{cm})$ $\overline{\mathrm{OH}} = 4\sqrt{3}(\mathrm{cm})$


 $\therefore (\stackrel{\text{\tiny H}}{}_{}^{} \stackrel{\text{\tiny \Pi}}{}) = \frac{1}{3} \times 64 \times 4 \sqrt{3} = \frac{256 \sqrt{3}}{3} (\text{cm}^3)$


- 21. 그림은 원뿔의 전개도이다. 다음 중 옳은 것은?
 - ① 밑면의 둘레는 4π cm 이다. ② 밑면의 반지름은 4 cm 이다.

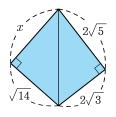
 - ⑤ 원뿔의 부피는 $8\sqrt{3}\,\mathrm{cm}^3$ 이다.



--4 cm-

- 22. 다음 그림과 같이 \overline{OH} 의 길이가 $4\,\mathrm{cm}$ 가 되 도록 하여 구를 평면으로 잘랐을 때, 단면인 원의 넓이가 $48\pi\,\mathrm{cm}^2$ 이었다. 이때 구의 반 지름을 구하여라.
 - ②8 cm $310\,\mathrm{cm}$
 - \bigcirc 6 cm ④ 12 cm ⑤ 16 cm

해설 원의 반지름의 길이를 r라 하면 단면인 원의 넓이가 $\pi r^2 =$


 $48\pi\,\mathrm{cm}^2$ 이므로 $r=4\sqrt{3}\,\mathrm{cm}$ 이다. $\angle AHO = 90$ °이므로 $\triangle AOH$ 에서 $\overline{OA}^2 = \overline{AH}^2 + \overline{OH}^2$ 이고

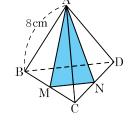
 \overline{OA} 를 R라 하면

 $R^2 = (4\sqrt{3})^2 + 4^2$

 $R^2 = 48 + 16 = 64 : R = 8 \text{ cm}$

23. 다음 그림에서 x 의 길이를 구하여라.

답:


▷ 정답: 3√2

피타고라스 정리를 적용하면 두 직각삼각형의 공통변의 길이는

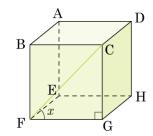
해설

 $\sqrt{20+12} = \sqrt{32}$ 이므로 $\sqrt{32-14} = \sqrt{18} = 3\sqrt{2}$ 이다.

 ${f 24.}$ 다음 정사면체에서 ${f M},\,{f N}$ 은 각각 ${f \overline{BC}},{f \overline{DC}}$ 의 중점이다. 정사면체의 한 모서리의 길이가 8cm 일 때, △AMN 의 넓이를 구하면?

① $4\sqrt{11}\text{cm}^2$ ② $4\sqrt{3}\text{cm}^2$ ③ 4cm^2

 $4 \ 8\sqrt{2} \text{cm}^2$ $5 \ 16\sqrt{3} \text{cm}^2$


 $\overline{\mathrm{AM}} = 4\sqrt{3} = \overline{\mathrm{AN}}$

 $\overline{\text{MN}} = 4$

(△AMN의 높이) $= \sqrt{(4\sqrt{3})^2 - 2^2} = \sqrt{44} = 2\sqrt{11}$

 $\therefore \triangle AMN = 4 \times 2\sqrt{11} \times \frac{1}{2} = 4\sqrt{11}(cm^2)$

25. 다음 그림은 한 변의 길이가 1 인 정육면 체이다. $\angle CFG = x$ 일 때, $\sin x$ 의 값을 구하면?

- ① $\frac{\sqrt{2}}{2}$ ② $\frac{2\sqrt{2}}{3}$ ③ $\frac{2}{3}$ ④ $\frac{\sqrt{6}}{2}$
- ⑤ 2

 $\overline{\text{CF}} = \sqrt{2}, \overline{\text{CG}} = 1$ 이므로 $\sin x = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$ 이다.