- $a>0,\;b>0$ 일 때, $\sqrt{2(a+b)},\,\sqrt{a}+\sqrt{b}$ 의 대소를 바르게 나타낸 1. 것은?
 - ① $\sqrt{2(a+b)} < \sqrt{a} + \sqrt{b}$ ② $\sqrt{2(a+b)} \le \sqrt{a} + \sqrt{b}$

2. a > 0, b > 0일 때, 다음 식 $\left(a + \frac{1}{b}\right) \left(b + \frac{9}{a}\right)$ 의 최솟값을 구하면?

① 16 ② 17 ③ 18 ④ 19 ⑤ 20

3. 양수 a, b, c에 대하여 a + b + c = 9일 때 abc의 최댓값은?

① 19 ② 21 ③ 23 ④ 25 ⑤ 27

4. $x \ge 0$, $y \ge 0$ 이고 x + 3y = 8일 때, $\sqrt{x} + \sqrt{3y}$ 의 최댓값은?

① 2 ② 3 ③ $\sqrt{10}$ ④ $\sqrt{15}$ ⑤ 4

5. n이 자연수 일 때, 2^{10n} , 1000^n 의 대소를 비교하면?

① $2^{10n} < 1000^n$ ② $2^{10n} \le 1000^n$ ③ $2^{10n} > 1000^n$

 $\textcircled{4} \ 2^{10n} \ge 1000^n \qquad \qquad \textcircled{5} \ 2^{10n} = 1000^n$

6. 다음은 임의의 실수 a, b 에 대하여 부등식 $|a+b| \le |a|+|b|$ 가 성립함을 증명하는 과정이다. 아래 과정에서 \bigcirc , \bigcirc , \bigcirc 에 알맞은 것을 순서대로 적으면?

- ③ |ab| ab, |ab| = -ab, $ab \le 0$

 $\textcircled{1} \ |ab|+ab, \ |ab|=ab, \ ab\leq 0$

- ① |ab| ab, |ab| = ab, $ab \ge 0$ ③ |ab| - ab, |ab| = ab, $ab \le 0$

7. 다음 중 세 수 3^{30} , 4^{20} , 12^{15} 의 대소 관계를 알맞게 나타낸 것은?

① $3^{30} > 4^{20} > 12^{15}$ ③ $12^{15} > 4^{20} > 3^{30}$ ② $4^{20} > 3^{30} > 12^{15}$ ④ $3^{30} > 12^{15} > 4^{20}$

다음 [보기] 중 항상 옳은 것을 모두 고르면?(단, a,b,c 는 실수) 8.

2 L, a, $\textcircled{\neg}$

보기 ① $\frac{a}{b^2} < \frac{c}{b^2}$ 이면 a < c① a > b 이면 ac > bc© a < b < 0 이면 a² > ab

③ €, €

 \bigcirc , \bigcirc

 $\textcircled{4} \ \textcircled{7}, \textcircled{E}, \textcircled{0} \qquad \qquad \textcircled{5} \ \textcircled{7}, \textcircled{e}, \textcircled{0}$

9. a+b=9를 만족하는 양수 a,b에 대하여 [ab]의 최댓값을 구하여라. (단, [x]는 x를 넘지않는 최대의 정수이다.)

▶ 답: _____

10. a > 0, b > 0 일 때, $(2a + b) \left(\frac{1}{a} + \frac{8}{b}\right)$ 의 최솟값을 구하여라.

달: _____

11.
$$x > 0$$
, $y > 0$ 일 때, $\left(3x + \frac{1}{y}\right) \left(\frac{1}{x} + 12y\right)$ 의 최솟값을 구하여라.

답: _____

12. a > 0, b > 0, c > 0일 때, $\frac{b}{a} + \frac{c}{b} + \frac{a}{c}$ 의 최솟값을 구하여라.

답: ____

13. a > 0, b > 0, c > 0일 때, $\frac{2b}{a} + \frac{2c}{b} + \frac{2a}{c}$ 의 최소값을 구하여라.

▶ 답: _____

14. a > 1일 때 $b = \frac{1}{2} \left(a + \frac{1}{a} \right), \ c = \frac{1}{2} \left(b + \frac{1}{b} \right)$ 이라 한다. a, b, c의 대소 관계로 옳은 것은?

 $\textcircled{4} \quad b > a > c \qquad \qquad \textcircled{5} \quad c > b > a$

① a > b > c ② a > c > b ③ b > c > a

15. 다음은 조화평균에 관한 어떤 수학적 사실을 증명한 것이다.

양수 a, b, H에 대하여 적당한 실수 r가 존재하여 $a = H + \frac{a}{r}$, $H = b + \frac{b}{r} \cdots (A)$ 가 성립한다고 하자. 그러면 $a \neq b$ 이고 $\frac{a-H}{a} = (\mathcal{H}) \cdots (B)$ 이므로 $H = (\mathcal{H})$ 이다. 역으로, $a \neq b$ 인 양수 a, b에 대하여 $H = (\mathcal{H})$ 이면, 식 (B)가 성립하고 $\frac{a-H}{a} \neq 0$ 이다. (B)에서 $\frac{a-H}{a} = \frac{1}{r}$ 이라 놓으면 식 (A)가 성립한다. 따라서 양수 a, b, H에 대하여 적당한 실수 r이 존재하여 식 (A)가 성립하기 위한 (\mathcal{H}) 조건은 $a \neq b$ 이고 $H = (\mathcal{H})$ 이다.

① $\frac{H-b}{b}$, $\frac{2ab}{a+b}$, 필요충분 ② $\frac{H-b}{b}$, $\frac{ab}{a+b}$, 필요충분 ③ $\frac{H-b}{b}$, $\frac{2ab}{a+b}$, 충분 ④ $\frac{b-H}{b}$, $\frac{ab}{a+b}$, 필요 중분 ⑤ $\frac{b-H}{b}$, $\frac{ab}{a+b}$, 충분

16. 이차방정식 $x^2-4x+4a=0$ (a는 실수) 이 허근을 가질 때, $a-1+\frac{9}{a-1}$ 의 최솟값은?

① 2 ② 3 ③ 4 ④ 5 ⑤ 6

9 4

17. $x+y+z=4, x^2+y^2+z^2=6$ 을 만족하는 실수 x, y, z에 대하여 x가 취할 수 있는 최댓값을 M, 최솟값을 m 이라 할 때, $\frac{M}{m}$ 의 값은?

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

18. 서로 다른 세 양수 p, q, r에 대하여 $\frac{2}{p+q} + \frac{2}{q+r} + \frac{2}{r+p} \ge \frac{k}{p+q+r}$ 이 성립할 때 k의 최댓값은?

① 2 ② 5 ③ 9 ④ 12 ⑤ 18

19. 양의 실수 a,b,c사이에 대하여 $\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}$ 의 최솟값을 구하여라. ① 9 ② 11 ③ 13 ④ 15 ⑤ 17

20. x > 3일 때 $\frac{3}{x-3} + 2 + 3x$ 의 최솟값은? ① 3 ② 5 ③ 12 ④ 15 ⑤ 17

9 0

4 1

© 11

21. 양수 x에 대하여 $\frac{x^2 + 2x + 2}{x}$ 는 x = a에서 최솟값 b를 가질 때, -2a + b + 1의 값은?

① 3 ② 4 ③ 5 ④ 6 ⑤ 7

- **22.** 세 양수 x, y, z가 x + y + z = 1을 만족할 때, $\left(2 + \frac{1}{x}\right)\left(2 + \frac{1}{y}\right)\left(2 + \frac{1}{z}\right)$ 의 최소값을 구하여라.
 - ▶ 답: _____