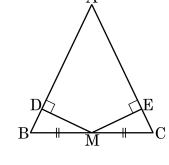

- 1. 두 개의 주사위 A, B를 동시에 던질 때, A 주사위는 홀수의 눈이 나오고, B 주사위는 3의 배수의 눈이 나올 확률은?

- ① $\frac{1}{4}$ ② $\frac{1}{6}$ ③ $\frac{1}{8}$ ④ $\frac{1}{10}$ ⑤ $\frac{1}{12}$

A : 홀수의 눈이 나올 확률은 $\frac{1}{2}$ B : 3 의 배수의 눈이 나올 확률은 $\frac{1}{3}$ $\therefore \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$

2. 폭이 일정한 종이테이프를 다음 그림과 같이 접었다. $\angle BAC = 70^\circ$ 일 때, $\angle BAC$ 와 크기가 같은 각은?


∠ABC
∠BAD

②ZACB ⑤ ZEAD ③ ∠EAC

© 2D1

종이를 접었으므로 ∠BAC = ∠DAC = 70°이다. ∠DAC =

∠ACB (엇각)이다. 따라서 ∠BAC = ∠ACB 이다. $oldsymbol{3}$. 다음 그림과 같이 $\overline{AB}=\overline{AC}$ 인 이등변삼각형 \overline{ABC} 에서 \overline{BC} 의 중점 을 M 이라 하자. 점 M 에서 $\overline{AB}, \ \overline{AC}$ 에 내린 수선의 발을 각각 D, E 라 할 때, $\overline{\mathrm{MD}}=\overline{\mathrm{ME}}$ 임을 보이는 과정에서 필요하지 <u>않은</u> 것을 모두 고르면?

 $\overline{\text{3}}\overline{\text{BD}} = \overline{\text{CE}}$

① $\overline{\mathrm{BM}} = \overline{\mathrm{CM}}$

 \bigcirc ZBMD = ZCME

② $\angle B = \angle C$

⑤ RHA 합동

Δ MDB 와 Δ MEC 에서

i) $\overline{\mathrm{MB}} = \overline{\mathrm{MC}}$ ii) $\angle B = \angle C(:: \triangle ABC는 이등변 삼각형)$

- iii) $\angle MDB = \angle MEC = 90^{\circ}$ i), ii), iii)에 의해 △MDB ≡ △MEC (RHA 합동)이다.
- 따라서 $\overline{\mathrm{MD}} = \overline{\mathrm{ME}}$ 이다.