다음 중 명제 '
$$x + y \ge 2$$
 이고 $xy \ge 1$ 이면, $x \ge 1$ 이고 $y \ge 1$ 이다.' 가거짓임을 보이는 반례는?

①
$$x = 1, y = \frac{1}{2}$$
 ② $x = 100, y = \frac{1}{2}$

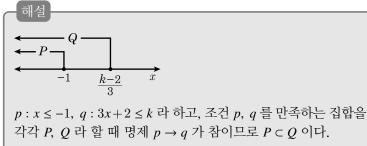
③
$$x = 1, y = 1$$

⑤ $x = -1, y = -5$

해설
$$x+y\geq 2,\ xy\geq 1\ \vdash \ \mathbb{U}^{2}$$
 만족하지만, $x\geq 1,y\geq 1$ 은 만족하지 않는 반례를 찾는다.
$$\therefore x=100,y=\frac{1}{2}$$
일 때, 거짓이다.

2. 명제 'x 가 소수이면 x 는 홀수이다.' 는 거짓이다. 다음 중 반례로 알맞은 것은?

① 2 ② 4 ③ 6 ④ 8 ⑤ 10 해설


________ 해설 x = 2 인 경우에는 소수이지만 짝수이다. **3.** 다음 중에서 명제 '자연수 n 의 각 자리 숫자의 합이 6 의 배수이면, n 은 6 의 배수이다.'가 거짓임을 보여주는 n 의 값은?

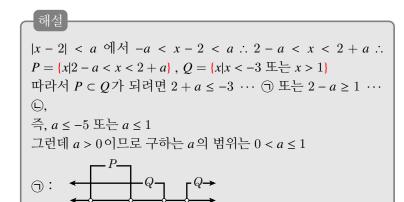
① 30 ② 33 ③ 40 ④ 42 ⑤ 답 없음

해설 실제로 주어진 명제는 참이 아니다. 33 의 경우 3+3=6 이지만, 33 은 6 의 배수가 아니다. **4.** 실수 x에 대하여 두 조건 $p:0 \le x \le 2$, q:x+a < 0에 대하여 명제 「모든 x에 대하여p이면 q이다.」가 참일 때, a의 범위를 구하시오.

해설 명제 「모든
$$x$$
 에 대하여 p 이면 q 이다.」가 참인 것은 두 조건 p , q 를 만족하는 진리집합 P , Q 에 대하여 $P \subset Q$ 이 성립한다. 따라서, $-a > 2$ 이다. 따라서, $a < -2$

5. 명제 $x \le -1$ 이면 $3x + 2 \le k$ 이다. 가 참일 때, 다음 중 상수 k 의 값으로 옳은 것은?

$$-1 \le \frac{k-2}{3}, -3 \le k-2$$


 $\therefore k \ge -1$

6. 실수 x에 대한 두 조건

p: |x-2| < a (단, a > 0) q: x < -3 또는 x > 1

에 대하여 명제 $p \to q$ 가 참이 되기 위한 a의 값의 범위를 $\alpha < a \le \beta$ 라 할 때, $\alpha + \beta$ 의 값을 구하여라.

- ▶ 답:
- ▷ 정답: 1

 $2-a \ 2+a$

$$\therefore \alpha + \beta = 1$$

- 7. 우리 학교에서 다음 두 명제는 참이다.
 - ⊙ 우리학교 동아리 회원들은 축제에 참석한다.
 - 우리학교 어떤 학생들은 축제에 참석하지 않는다.
 - 이 때, 다음 명제 중 참인 것은?
 - ① 어떤 동아리 회원들은 우리학교 학생이 아니다.
 - ② 우리학교 학생들은 모두 동아리 회원이다.
 - ③ 동아리 회원들은 우리학교 학생이 아니다.
 - ④ 우리학교 어떤 학생들은 동아리 회원이 아니다.
 - ⑤ 우리학교 어떤 학생들은 동아리 회원이다

①, ②, ③은 직관적으로 판단해도 거짓이다. 우리 학교 어떤 학생들은 축제에 참석하지 않았고, 모든 우리학교 동아리 회원들은 축제에 참석하였다고 하였으므로 우리학교 학생 중에는 동아리회원이 아닌 학생이 있음을 알 수 있다. 따라서 ④는 참이다. 한편 동아리회원이 한명도 없는 경우도 주어진 두 조건 ①, ⑥를 만족하므로 ⑤번은 거짓이 된다.

.: 답 ④

8. 두 명제「겨울이 오면 춥다.」, 「추우면 눈이 온다.」가 모두 참이라고 할 때, 다음 명제 중에서 반드시 참이라고 말할 수 없는 것은 ?

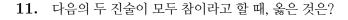
- ① 눈이 오지 않으면 춥지 않다.
- ② 춥지 않으면 겨울이 오지 않는다.
- ③ 겨울이 오면 눈이 온다.
- ④ 눈이 오면 겨울이 온다.
 - ⑤ 눈이 오지 않으면 겨울이 오지 않는다.

해설

p: 겨울이 온다. q: 춥다. r: 눈이 온다. 라 하면 $p \rightarrow q$, $q \rightarrow r$ 이다.

- ① $q \Rightarrow r$ 이므로 $\sim r \Rightarrow \sim q$ (대우 명제)
- ② $p \Rightarrow q$ 이므로 $\sim q \Rightarrow \sim p$ (대우 명제) ③ $p \Rightarrow q, q \Rightarrow r$ 이므로
- $p \Rightarrow r \text{ (삼단논법)}$
- ④ $p \Rightarrow r$ 이라 해서 반드시 $r \Rightarrow p$ 인 것은 아니다.
- ⑤ $p \Rightarrow r$ 이므로 $\sim r \Rightarrow \sim p$ (대우명제)

- 9. 주머니 속의 빨강, 파랑, 노랑의 서로 다른 색의 구슬 세 개를 차례로 꺼낼 때, 다음 중 단 하나만 참이라고 한다. 다음에서 옳은 것을 고르면?
 - ⊙ 첫번째 구슬은 빨간색이 아니다.
 - 두번째 구슬은 파란색이 아니다.
 - © 세번째 구슬은 파란색이다.
 - ① 첫번째 구슬이 빨간색이다. ② 첫번째 구슬이 파란색이다.
 - ③ 두 번째 구슬이 파란색이다.
 - ④ 세 번째 구슬이 노란색이다.
 - ⑤ 두 번째 구슬이 노란색이다.


- ©이 참이면 ©도 참이 되어 모순. ○이 거짓이고 ○가 참이면 ○이 참이 되어 모순 : ○이 참이고,
- (C), (C)이 거짓이다.
- .. 첫번째 구슬이 노란색, 두 번째 구슬이 파란색, 세 번째 구슬이 빨간색이다.

10. 두 명제 '여름이 오면 덥다.', '더우면 비가 온다.' 가 모두 참일 때, 다음 중 반드시 참이라고 할 수 없는 것을 <u>모두</u> 고르면?

- ① 덥지 않으면 여름이 오지 않는다.
- ② 여름이 오면 비가 온다.
- ③ 비가 오면 여름이 온다.
 - ④ 비가 오지 않으면 여름이 오진 않는다.
- ⑤ 더우면 여름이 온다.

해설

세 명제 '여름이 온다.', '덥다.', '비가 온다.' 를 각각 p, q, r 로 놓으면 $p \Rightarrow q$, $q \Rightarrow r$ 이므로 $p \Rightarrow r$ 명제가 참이면 그 대우 역시 참이므로~ $q \Rightarrow \sim p$, $\sim r \Rightarrow \sim q$, $\sim r \Rightarrow \sim p$ 그러나 어떤 명제가 참이라고 해서 역과 이가 반드시 참인 것은 아니다. 따라서 반드시 참이라고 할 수 없는 것은 ③, ⑤이다.

- ⊙ 키가 큰 학생은 농구를 잘한다.
- 키가 큰 학생은 달리기 또는 수영을 잘한다.
- ① 키가 큰 학생은 달리기를 잘한다.
- ② 수영을 잘하는 학생은 농구도 잘한다.
- ③ 농구를 잘하는 학생은 달리기도 잘한다.
- ④ 달리기를 못하는 학생은 키가 크지 않다.
- ⑤ 달리기와 수영을 모두 못하는 학생은 키가 크지 않다.

키가 큰 학생의 집합을 A, 농구를 잘하는 학생의 집합을 B, 달리기를 잘하는 학생의 집합을 C, 수영을 잘하는 학생의 집합을 D 라고 하면,

- ① $A \subset (C \cup D)$ 에서 $A \subset C$ 라고 할 수 없으므로 거짓이다.
- ② $D \subset B$ 라고 할 수 없으므로 거짓이다. ③ $B \subset C$ 라고 할 수 없으므로 거짓이다.
- ④ $A \not\subset C$ 이므로 $C^c \not\subset A^c$ 에서 거짓이다.
- ⑤ $A \subset (C \cup D)$ 에서 $(C \cup D)^c \subset A^c$

즉, $C^c \cap D^c \subset A^c$ 이므로 참이다.

- 12. 다음 두 조건으로 알 수 있는 것은?
 - ⊙ 어떤 사람은 안경을 끼지 않았다.
 - 여자는 모두 안경을 꼈다.
 - ① 남자는 모두 안경을 꼈다.
 - ② 안경을 끼지 않은 여자도 있다.
 - ③ 여자는 모두 안경을 끼지 않았다.
 - ④ 안경을 끼지 않은 남자도 있다.
 - ⑤ 남자는 모두 안경을 끼지 않는다.

안경을 낀 사람의 집합을 A, 여자의 집합을 B 라고 하면

$$\bigcirc A^c \neq \phi$$

안경을 쓰지 않는 사람은 여자가 아니다.

:. 안경을 끼지 않은 남자도 있다.

13. 다음 보기 중 세 실수 *a*, *b*, *c* 가 모두 0 이 아니기 위한 필요조건이 <u>아닌</u> 것을 모두 고르면?

型プ ③ $abc \neq 0$ © $a+b+c \neq 0$ © $a^2+b^2+c^2 \neq 0$

③ (□)

 \bigcirc

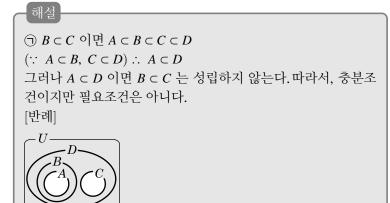
(2) (L)

b = 0, c = -1) : 필요조건

4)7, (L) (S) (L), (E)

교 p가 q이기 위한 필요조건이려면
$$q \Rightarrow p$$
 q: 세 실수 a , b , c 가 모두 0 이 아니다. ① $q \leftrightarrow abc \neq 0$ ∴ 필요충분조건 ② $q \Rightarrow a+b+c \neq 0$ (반례 : $a=-1$, $b=-1$, $c=2$), $q \Leftarrow a+b+c \neq 0$ (반례 : $a=0$, $b=-1$, $c=2$) ∴ 아무조건도 아니다. ② $q \Rightarrow a^2+b^2+c^2\neq 0$, $q \Leftarrow a^2+b^2+c^2\neq 0$ (반례 : $a=0$,

- ③ B ⊂ C 인 것은 A ⊂ D 이기 위한
 ⑤ B ∩ D ≠ Ø 인 것은 A ∩ C ≠ Ø 이기 위한
 - 버기


I . 필요조건이나, 충분조건은 아니다.

Ⅱ. 충분조건이나, 필요조건은 아니다. Ⅲ. 필요충분조건이다.

 $(\Box B \cap D \neq \emptyset \Rightarrow A \cap C \neq \emptyset$ [반례]

Ⅳ. 아무 조건도 아니다.

① I, I ② I, II ③ I, I ④ I, V ⑤ II, I

- **15.** x, y 가 실수일 때 세 명제 p: xy = 0, q: |x| + |y| = 0, r: x + y = 0 에 대한 다음 설명 중 옳은 것은?
 - $p \leftarrow q$ 이기 위한 충분조건이지만 필요조건은 아니다.
 - $p \vdash r$ 이기 위한 충분조건이지만 필요조건은 아니다.
 - $p \leftarrow q$ 이기 위한 필요충분조건이다.
 - $q \vdash p$ 이기 위한 필요조건이다.

q 는 *r* 이기 위한 충분조건이다.

$$p: xy = 0 \to x = 0 \ \underline{+} \ \underline{-} \ y = 0$$

 $q: |x| + |y| = 0 \to x = 0 \ \exists \exists \ y = 0$

$$r: x + y = 0 \rightarrow x = -y$$

 $\therefore q \rightarrow p \{ p 는 q \text{이기위한필요조건} \}$
 $q \leftarrow p \text{이기위한충분조건}$
 $q \rightarrow r \{ p \leftarrow r \text{이기위한필요조건} \}$
 $r \leftarrow p \text{이기 위한 충분조건}$

- **16.** 다음에서 조건 p 는 조건 q 이기 위한 필요조건이지만 충분조건이 아닌 것은? (단, a, x, y는 실수)
 - $p: a < 0, q: \sqrt{a^2} = -a$

②
$$p: xy < 0, q: x < 0 \ \cap \exists \exists y > 0$$

- p: xy = 0, q: x = 0 또는 y = 0
- $p : A \cup (B A) = B, q : A \subset B$
- *p*: *x*, *y* 가 유리수, *q*: *x* + *y*, *xy* 가 유리수

② 충분조건일 때 의 반례는 x > 0 이고, y < 0 인 경우이다.

17. 조건 p는 조건 q이기 위한 어떤 조건인지 차례대로 바르게 나열한 것은? (단, x, y, z는 실수)

$$\bigcirc p : x^2 + y^2 > 0, q : x \neq 0, y \neq 0$$

$$\bigcirc p : x+z>y+z, q : x>y$$

- ① ③ 필요조건 ⓒ 충분조건
- ② ③ 충분조건 필요조건 ③ ③ 충분조건 ○ 필요충분조건
 - ④ ③ 필요충분조건 ⓒ 필요충분조건
- ⑤ 및 필요조건 ⓒ 필요충분조건
 - 해설
 - ① 주어진 명제는 거짓이고 역은 참이다. ⑥ 주어진 명제와 역 모두 참이다.

18. 다음 중 p가 q이기 위한 충분조건이지만 필요조건이 <u>아닌</u> 것을 <u>모두</u> 고르면? (단, a, b, c 는 실수이다.)

2 7, 0

$$\bigcirc p: (a-b)(b-c) = 0, q: a = b = c$$

 \bigcirc

해설

①
$$p: a^2 + b^2 = 0$$
 에서 $a = b = 0$ 이고, $q: ab = 0$ 에서 $a = 0$

또는
$$b = 0$$
 이므로 $p \Rightarrow q, q \Rightarrow p$ 이다.
⑤ $p:(a-b)(b-c) = 0$ 에서 $a = b$ 또는 $b = c$ 이고 $q:a = b = c$ 이므로 $p \Rightarrow q, q \Rightarrow p$ 이다.