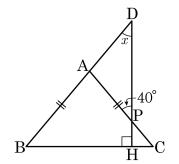
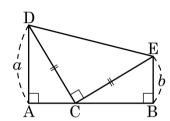

L. 다음 그림에서
$$\overline{AB} = \overline{AC} = \overline{CD}$$
이고 $\angle BAC = 100\,^{\circ}$ 일 때, $\angle DCE$ 의 크기를 구하여라.

 다음 그림과 같이 AB = AC 인 이등변삼각형 ABC에서 ∠A의 이등분선과 BC 와의 교점을 D라 하자. AD 위의 한 점 P에 대하여 다음 중 옳은 것은?



 \bigcirc $\overline{AC} = \overline{BC}$

 $\overline{AP} = \overline{BP}$


 \bigcirc $\triangle PDB \equiv \triangle PDC$

3. $\overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC 에서 $\angle x$ 의 크기는?

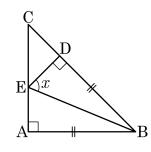
① 35° ② 40° ③ 45° ④ 50° ⑤ 55°

4. 다음 그림에 대한 설명으로 옳지 <u>않은</u> 것은?

①
$$\angle ADC = \angle ECB$$

ECB ②
$$\angle CDE = \angle CEB$$

$$\textcircled{4} \triangle ACD \equiv \triangle BEC$$

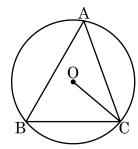

- **5**.

 - ∠x의 크기를 구하여라.

다음 그림과 같이 직각삼각형 ABC에서 점 D에서 \overline{AC} 에 내린 수선의 발이 E이고 $\overline{BD} = \overline{ED}$ 일 때,

6. ロ フ ゴ

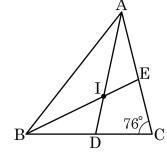
다음 그림과 같이 $\angle A = 90^\circ$, $\overline{AB} = \overline{AC}$ 인 직각이등변삼각형 ABC 가 있다. $\overline{AB} = \overline{DB}$ 인 점 D 를 지나며 \overline{AC} 와 만나는 점을 E 라고 할 때, $\angle x$ 의 크기는?



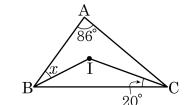
① 60° ② 62.5° ③ 65° ④ 67.5° ⑤ 70°

좌표평면 위의 세 점 A(0, 2), B(2, 1), C(4, 5) 에 대하여 삼각형 ABC 의 내부에 있는 점 중 A. B. C 까지의 거리가 모두 같은 점을 P(a, b) 라 할 때, ab 의 값을 구하여라.

▶ 답:

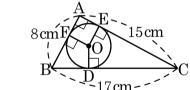

8. 다음 그림에서 점 O는 △ABC의 외심이고, ∠OCB = 40°일 때, ∠BAC의 크기를 구하면?

① 50° ② 55° ③ 60° ④ 65° ⑤ 70°


 \triangle ABC 에서 점 I 는 내심이다. 다음 그림과 같이 \angle C = 76° 일 때, ∠ADB + ∠BEA 를 구하면?

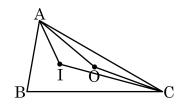
9.

190° ② 195° 205° 201° 204°


10. 다음 그림에서 점 I는 △ABC의 내심이고, ∠A = 86°일 때, ∠ABI =
()°이다. () 안에 알맞은 수를 구하여라.

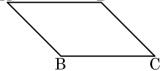
- **11.** 둘레의 길이가 18cm 이고. 넓이가 27cm² 인 삼각형의 내접원의 반지 름의 길이가 rcm 이다. r의 값 을 구하여라.
 - ▶ 답:

12. 다음 그림에서 점 O는 직각삼각형 ABC의 내심이고 점 D,E,F는 내접원과 세 변의 접점이다. 이때, 선분 AF의 길이를 구하여라.

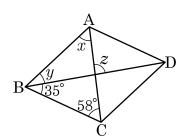

압: cm

13. 다음 그림에서 점 I 는 $\triangle ABC$ 의 내심이고 $\overline{DE}//\overline{BC}$ 라고 할 때, $\overline{AE}=($)cm이다. 빈 칸에 들어갈 수를 구하여라.

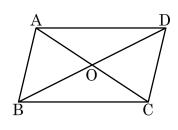
입 : _____


14. 다음 그림에서 점 O 는 \triangle ABC 의 외심, 점 I 는 \triangle ABC 의 내심이다. \angle AOC + \angle AIC = 290° 일 때, \angle AIC 의 크기는?

① 160° ② 120° ③ 125° ④ 130° ⑤ 140°


15. 다음 \Box ABCD 에서 \angle A = $\frac{1}{3}$ \angle B 일 때, \Box ABCD 가 평행사변형이 되도 록 하는 \angle C 를 구하여라

A D



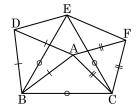
16. 다음 그림과 같은 평행사변형 ABCD 에서 ∠DBC = 35°, ∠ACB = 58° 일 때, ∠x + ∠y + ∠z 의 크기는?

① 158° ② 162° ③ 168° ④ 174° ⑤ 180°

17. 다음은 □ABCD 가 평행사변형일 때, 두 대각선은 서로 다른 것을 이등분함을 증명하는 과정이다. ⑤~⑥ 중 알맞지 않은 것을 골라라.

가정: □ ABCD 에서 $\overline{AB} = \overline{DC}$, $\overline{AD} = \overline{BC}$ 결론: $\overline{AO} = \overline{CO}$, $\overline{BO} = \overline{DO}$ 증명: ΔABO 와 ΔCDO 에서 \overline{AB} // \overline{DC} 이므로 ∠BAO=(⑤∠DCO) (엇각) ∠ABO = ∠CDO (엇각) $\overline{AB} = (\overline{\bigcirc CD})$ ∴ ΔABO ≡ ΔCDO (©SSS 합동)

 $\therefore \overline{AO} = (\textcircled{B}\overline{CO}), (\textcircled{D}\overline{BO} = \overline{DO})$



18.

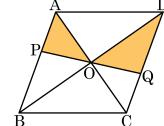
다음 그림의

가 평행사변형이 되는 조건은?

 \triangle ADB, \triangle BCE, \triangle ACF 는 \triangle ABC 의 세 변을 각각 한 변으로 하는 정삼각형이다. \square AFED

- ① 두 쌍의 대변이 각각 평행하다.
- ② 두 쌍의 대변의 길이가 각각 같다.
- ③ 두 쌍의 대각의 크기가 각각 같다.
- ④ 두 대각선이 서로 다른 것을 이등분한다.
- ⑤ 한 쌍의 대변이 평행하고 그 길이가 같다.

9. 다음 그림과 같이 평행사변형 ABCD 의 두 꼭짓점 A, C 에서 대각선 B, D 에 내린 수선 의 발을 각각 E, F 라 할 때, 다음 중 □AECF 가 평행사변형이 되는 조건으로 가장 알맞은 것은?


①
$$\overline{AE}//\overline{CF}$$
, $\overline{AF}//\overline{CE}$ ② $\overline{AE} = \overline{CF}$, $\overline{AF} = \overline{CE}$

 $\overline{3} \overline{AE} = \overline{CF}, \overline{AE}//\overline{CF}$

 $\textcircled{4} \overline{AE}//\overline{CF}$

 $\odot \overline{AF} = \overline{CF}, \overline{AF}//\overline{CF}$

는?

20. 넓이가 $80 \, \text{cm}^2$ 인 다음 평행사변형 ABCD 에서 어두운 부분의 넓이

 $2 12 \,\mathrm{cm}^2$ $\bigcirc 8 \,\mathrm{cm}^2$

 $15\,\mathrm{cm}^2$

 $\odot 20 \, \text{cm}^2$ $4 18 \, \text{cm}^2$